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-,.distribution of radiation from that surface. The existence of such a transfer
function implies a shift-invariant scattering function which does not change
shape with the angle of the incident beam. This result greatly reduces the
quantity of data required to completely characterize the scattering properties
of'a surface. For a large class of well-behaved surfaces this transfer func-
tion is described in terms of onl the rms surface roughness and the surface
autocovariance function. It thus provides a straightforward solution to the
inverse scattering problem (i.e., determining surface characteristics from
scattered light measurements). O-nce the surface characteristics are known, the
same theory provides an equally simple method of predicting the wavelength
dependence of the scattered light distribution.

An extensive experimental program has accompanied this theoretical develop-
ment.< The apparatus and experimental procedures utilized in measuring the
angular distribution of light scattered from a variety of optical surfaces
for several different angles of incidence and wavelengths are described in
detail. Experimental verification of the shift-invariant scattering function
has been successfully demonstrated for smooth surfaces (aW<<X). The scattered
light measurements from rough (diffusely reflecting) surfaces results in a
icattering function which isshift-invariant over only a small range of angles
and departs significantly from the predicted behavior at large scattering
angles.

A computer program has been developed that operates upon scattered light
data to yield the total integrated scatter, the surface transfer function, the
rms surface roughness, and the surface autocovariance function. Although
accurate determination of microstructure on optical surfaces is extremely dif-
ficult to accomplish by direct measurement (thus the motivation for attempting
to solve the inverse icattering problem), favorable comparisons of predicted
surface characteristics with the corresponding measured quantities have been
demonstrated for both smooth surfaces and moderately rough surfaces. In
addition, experimental verification of the inverse scattering program was
accomplished indirectly by supplying scattered light data of one wavelength as
input to the inverse scattering program in order to determine the relevant
surface characteristics; then this information was used to predict the scat-
tering function at a different wavelength. Excellent agreement with the
measured scattering function at that wavelength was achieved.

Since the above technique involves numerical computations on sampled data,
an analytical expression for a wavelength scaling law is not required to deter-
mine the scattering function at any desired wavelength. However, in order to
gain insight into the wavelength dependence of surface scatter phenomena, a
wavelength scaling law for smooth surfaces was derived and verified. This
scaling law consists of a change in the scattering angle as well as a change
in the amplitude of the scattering function with changes in wavelength. It
therefore provides a valuable tool for predicting the scattering behavior in
certain angular regions or wavelength ranges where direct measurements are
difficult to obtain.
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CHAPTER 1 Dist Special

INTRODUCTION

The relationship between surface micro-structure and radiant

energy scattering plays an important role in many areas of technical

interest. These include the trade-off between cost and performance in

the fabrication of optical surfaces, design considerations for stray-

light rejection systems, evaluation of machined metal mirrors for high-

energy laser applications, laser-radar backscatter signature programs,

and a host of other applications requiring extensive scattering data.

If the scattering mechanism were completely understood, surface prepa-

ration techniques or measurement programs in many of these areas could

possibly be changed to obtain more favorable results.

Background

If a propagating wave is incident upon a perfectly plane sur-

face, the reflected wave is concentrated in the specular direction as

determined by the well-known laws of reflection. Another idealized

surface is the perfectly diffuse reflector which scatters light accord-

ing to Lambert's cosine law. A more physically realistic situation is

shown in Fig. 1.1, which illustrates the optical scattering that occurs

when ligh is reflected from a rough surface. If the surface is not

too roughlthe reflected light consists of a specular component plus a

~1



SPECULAR BEAM

INCIDENT BEAM
SCAT(ERED BEAM

Fig. 1.1. Schematic Representation of Reflectance
from a Rough Surface.

diffuse component which is scattered over a wide range of aingles cen-

tered upon the specular beam.

One of the earliest investigators of scattering from a rough

surface was Lord Rayleigh. In 1896 (Rayleigh, 1945) he was investiga-

ting the reflection of acoustic waves, and later (Rayleigh, 1901) he

noted the effects of poorly polished surfaces on optical perfo:nance.

He examined the effects of surface roughness, wavelength, and :ngle of

incidence on the reflected beam. Chenmoganadam (1919) derived a theory

of scattered light based on the phase shift of the reflected beam due

to the rough surface.
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However, it was not until the problem of background clutter in

radar applications became apparent that a determined effort was made

to solve the scattering problem for random surfaces. For example, scat-

tering from the sea motivated the work of Davies (1954) as well as

otheri 15lakc, 1950; Barrick, 1970; Bass, 1968; Beard, 1961; and Fuks,

1966). Considerable work has also been done in attempts to explain

radar reflection from the moon (Daniels, 1961; Evans and Pettengill,

1963; Pung and Moore, 1964; Fung, 1967; and Hagfors, 1964).

4, Random rough surfaces have been treated in two different ways.

Rough surfaces made up of a random array of objects or shapes with

known scattering characteristics were investigated by Ament (1960),

Twersky (1957), Spetner (1958), and Peake (1959). The other approach

taken by Isakovich (1952), Ament (1953), Eckart (1953), Feinstein

(1954), ,avies (1954), and Beckmann (1957), treats the rough surface as

a stochastic process.

S.'ice optical surfaces clearly fall into the second classifica-

tion of random surfaces, Bennett and Porteus (1961) expanded and experi-

mentally investigated the scattering theory of Davies (1954). Froml this

and subsequent work (Bennett, 1963; and Porteus, 1963) the reflectance

proper- ies of samples with a measured surface roughness were directly

compared t: theory with good results. Interest in these measurements

led to investigations at the Optical Sciences Center, University of

Arizona, by Mott (1971), McKenney, Orme and Mott (1972), Orme (1972),

DeBell and Harvey (1974), Shack and DeBell (1974), and Shack and

Harvey (1975).
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The Bidirectional Reflectance Distribution Function (BRDF) was

introduced by Nicodemus (1970) as a quantity which completely describes

the reflectance (or scattering) properties of a given surface.

Bidirectional reflectance data for spectral regions extending into the

infrared have been collected in connection with heat-transfer analysis.

Another area of interest involves the possibilities for spectro-

chemical analysis by reflected radiation, principally in connection

with remote sensing of the earth and other planetary surfaces. Also

BRDF measurements have been made on many proposed baffle materials for

use in the Large Space Telescope program (Breault and Fannin, 1973).

Recently there has been a great deal of activity in the area of BRDF

measurements of machined metal mirrors to be used in high-energy laser

applications (Young, 1975; Curcio, 1975; Decker, Bennett and Bennett,

1975; Church and Zavada, 1975; and Stover, 1975).

Dissertation Content

In this dissertation the scattering of light from optical

elements is considered to be solely a surface phenomenon. Light-

scattering from optical surfaces is then treated as a diffraction

process in which the pupil function has random phase variations in

addition to any existing amplitude variations. A complete Fourier

treatment of near-field scalar diffraction theory is therefore devel-

oped in Chapter 2. This diffraction theory is generalized in Chapter 3

to include phase perturbations that lead to scattered radiation. Appro-

priate assumptions are then made concerning the statistical properties

of optical surfaces and an analytical expression is obtained for the
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transfer function of a scattering surface. The existence of such a

transfer function implies a shift-invariant scattering function which

does not change shape with the angle of the incident beam. This result

greatly reduces the quantity of data required to completely character-

ize the scattering properties of a surface. For a large class of well-

behaved surfaces this transfer function is described in terms ot only

the rms surface roughness and the surface autocovaiiance function. It

thus provides a straightforward solution to the inverse scattering

problem (i.e., determining surface characteristics from scattered light

measurements). Once the surface characteristics are known, the same

theory provides an equally simple method of predicting the wavelength

dependence of the scattered light distribution.

An extensive experimental program has accompanied this theoreti-

cal development. Chapter 4 describes in, detail the apparatus and experi-

mental proctdures utilized in measuring the angular distribution of ligni

scattered from a variety of optical surfaces for several different angles

of incidence and wavelengths. The results of these experiments are

reported in Chapter 5 and compared to theoretical predictions with

generally good agreement.

Consistent with most research efforts, not all questions con-

cerning this topic are completely answered in this dissertation. After

a brief summary of results, Chapter 6 is therefore devoted to a few

comments concerning new theoretical considerations and suggestions for

future research.

5



I
I CHAPTER 2

I ' A FOURIER TREAENT OF NEAR-FIELD

SCALAR DIFfRACTION THEORY

The phenomenon of diffraction involves a wave field incident

upon one or more objects or apertures with absorbing or conducting

surfaces. The calculation of the wave field emerging from such a

diffracting system is the goal of all diffraction theories.

It should be emphasized that both the Kirchhoff aid Rayleigh-

Sommerfeld theories, as well as the present discussion in this paper,

treat light as a scalar phenomenon. (For a detailed treatment ef the

historical development of diffraction theory, see Goodman, 1968,

pp. 30-56.) Such an approach entirely neglects the fact that the

vvrious components of the electric and magnetic field vectors are

:oupled through Maxwell's equations and cannot be treated independently.

Microwave experiments have shown that scalar theory yields

very accurate results provided that: (1) the diffracting aperture is

large compared to a wavelength, end (2) the diffracted wave field is

observed far from the aperture. It is significant that although the

present treatment is limited by being a scalar theory, the above

approximations are not imposed during the mathematical formulation as

they are in the Kirchhoff theory. Furthermore, the following devel-

opment provides much more insight than the conventional Rayleigh-

Sommerfeld theory.

6
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The Diffracted Wave Field
as a Superposition of Plane Waves

The fundamental diffraction problem consists of two parts: (1)

determining the effect of introducing the diffracting screen upon the

field immediately behind the diffracting screen, and (2) determining

how it affects the field downstream from the diffracting screen (i.e.,

what is the field immediately behind the diffracting screen and how

does it propagate).

Consider first the propagation problem and let the complex

amplitude distribution of the optical disturbance in plane Po be repre-

sented by the scalar function Uo(0 ,P;O). This scalar disturbance in Po

will be considered the only radiation contributing to the field

U(&,P;A) in plane P (see Fig. 2.1), A has a parametric relationship

since it is a function of the observation plane. Note that a scaled

coordinate system is utilized in which t = x/X, = y/X, A = z/X.

Initial Conditions

It will be assumed that the complex amplitude of any monochro-

matic optical disturbance propagating through free space must obey the

time-independent wave equation (Helmholtz equation). We will also

assume that the Fourier transform of the scalar field UO(.t,9;O) exists.

This is not a severe restriction, however, as Bracewell (1965) points

7
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out that physical possibility is a valid sufficient condition for the

existence of a Fourier transform.

The Direct Application of Fourier Transform Theory

We can thus define the following Fourier transform relation-

ships that exist for planes P0 and P.

cc
A0(ctB;O) - JJ U0(1,9;O) e~2ia+B)dU (1)

UO(-90 JJf A0(ct,B;O) e 2r(6+Pdd (2)

A (cc, 8;A) - JJ U(.t,9;2) e~i2w(+O) dtdg (3)

= fJ A(ao;) e i21r(a+00dade. (4)
-c

Equations (2) and (4) indicate that the monochromatic scalar

wave field in planes PO and P can be decomposed into plane wave compo-

nents whose amplitudes are a function of the direction cosines of the

propagation vector. The functions Ao(a,O;O) and A(a,O;A) will be

referred to as the direction cosine spectrum of plane waves contributing

to the disturbance UoC&,;O) and U(,9;9) respectively. The direction

9



cosine spectrum of plane waves is used here in lieu of the angular

spectrum of plane waves discussed by Ratcliffe (1956) and others. This

O Iis consistent with a more general treatment which is not restricted to

small angles.

In the scaled coordinate system V2 A2V2 ' and k2 A A2k2 =

(27)2. Hence the Helmholtz equation becomes

[0 (2i) 2)U(1,P;A) - 0.(5

Now by applying Eq. (4) and requiring the individual plane wave

components to satisfy the Helmholtz equation, we find

A(ca,;A) - Ao(Ca,;0) e 2wy (6)

where

• r.

The Transfez Function of Free Space

Since Eq. (6) relates the Fourier transforms of the scalar

fields in plrnes P0 and P it can be rewritten in terms of a transfer

function for free space, H(a,s;A)

A(a,B;t) ei2yfl (7)

We have thus far applied no restrictions on y and two regions

of interest are apparent: that for real values of y and that for

imaginary values,

10
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f for (a2 + 02) 1 y is real

y for (a2 + 82) > 1 y is imaginary.

(8)

Consider now a unit circle in the a-$ plane of direction cosine

space as shown in Fig. 2.2. Inside this unit circle y is real and the

corresponding part of the disturbance will propagate and contribute to

the wave field in plane P. However, those components of the direction

cosine spectrum which lie outside the unit circle have imaginary values

of y and represent that part of the disturbance which experiences a

rapid exponential decay. This is the part of the disturbance which is

commonly referred to as the evanescent wave (Goodman, 1968).

Let Uo(&,P;O) be the product of the complex amplitude transmit-

tance of a diffracting screen and the complex amplitude distribution

incident upon it. Figure 2.3(a) illustrates this quantity broken down

into the part which propagates and the part which makes up the evanes-

cent wave for the case of a unit amplitude plane wave normally incident

upon a circular aperture. The direction cosine spectrum of plane waves

associated with these respective optical disturbances are shown in Fig.

2.3(b).

Note that the sharp corners on the original disturbance in

Fig. 2.3(a) correspond to Kirchhoff's unnecessary boundary conditions.

It is the propagating part only that accurately represents the

11



I,

a12 + 02 1

Fig. 2.2. Unit Circle in Direction Cosine Space.

The plane wave components inside this
circle will propagate, and the plane
wave components outside this circle
contribute to the evanescent wave.
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disturbance immediately behind the diffracting aperture which will con-

tribute to the disturbance downstream.

It is now clear that the complex amplitude distribution in plane

P can be determined by Fourier transforming the original disturbance

U0 (4,9;0), then multiplying the resulting direction cosine spectrum of

plane waves Ao(a,O;0) by the transfer function of free space given in

Eq. (7), and finally by applying the inverse Fourier transform integral

of Eq. (4). However, the limits of integration on Eq. (4) must be

changed such that the integration is performed only over the unit

circle instead of over the entire a-$ plane.

The above analysis, in which an optical disturbance is repre-

sented as a superposition of plane waves, corresponds to the transfer

function approach in image formation and yields considerable insight

into the behavior of these plane wave components during the phenomenon

of diffraction.

The Diffracted Wave Field

as a Superposition of Spherical Waves

The convolution theorem (Bracewell, 1965) of Fourier transform

theory requires that a convolution operation exists in the domain of

real space that is equivalent to Eq. (6).

The Point Spread Function

We thus have the alternative method of expressing the complex

amplitude distribution in the observation plane by the convolution of

14



the original disturbance with a point spread function. The point

spread function is obtained by taking the inverse Fourier transform of

the transfer function found in Eq. (7).

Starting with the well-known Weyl expansion formula (Weyl, 1919),

Lalor (1968) obtained a result which, with straightforward modification,

yields

e i 27r (cl+ 8 )d d =  I la -  -rei2rf' (9)

where

f.2 t2+ 92 +g2

The left side of Eq. (9) is the inverse Fourier transform of the trans-

fer function of free space. The appropriate point spread function is

thus given by

-*hi(g= -1 {ei y = -) I e . (10)

Huygens' Principle

Recall now the assertion by Christiaan Huygens (Thompson, 1912N

in 1678 that each element of a wavefront may be regarded as the center

of a secondary disturbance which gives rise to spherical wavelets; and

moreover that the position of the wavefront at any later time is the

envelope of all such wavelets. These intuitive convictions, sometimes

called Huygens' wavefront construction, are an excellent description of

15



a convolution operation in which the initial disturbance is convolved

with a Huygens' wavelet. It is therefore quite appropriate to think of

the point spread function of a diffraction system as the intersection of

a Huygens' wavelet with the observation plane.

Equation (10) is therefore an exact mathematical expression for a

Huygens' wavelet which is valid right down to the initial disturbance

itself. However, for ' >> 1,

i2'rr^ e i2'n ( - 1/4)

h(5,D ,;,) = i(^/^) e = (,i/14 (11)

it reduces to the familiar expression for a spherical wave with cosine

obliquity factor and a n/2 phase delay.

General Rayleigi-Sommerfeld Diffraction Formula

If we write down the convolution integral for the disturbance in

the observation plane, using the expression in Eq. (10) for h(.,P;i), we

obtain the general Rayleigh-Sommerfeld diffraction formula

OD 

i T_COi 27ir

where

i)= + (9-pt)2 + i2. (13)

This is an exact expression for the diffracted wave field which is valid

throughout the entire space in which the diffraction occurs--right down

16



to the aperture. No approximations have been made in this scalar

theory. Furthermore, the above equation expresses the disturoance on

the observation plane as a superpisition of spherical waves which

corresponds to the spread functior approach in image formation.

Geometrical Configurations of the Observation Space

In order to insure a space invariant point spread function our

equations have been restricted to mapping an optical disturbance from

an input plane to an output plane, where A has a parametric relation-

ship since its value determines the location of the output plane. How-

ever, the summation of these Huygens' wavelets is valid over any

surface. The above treatment thus gives us a far more powerful concep-

3tual tool than provided by the equations themselves.

We will therefore investigate the properties of the diffracted

wave field on two particular geometrical configurations of the

observation surface.

The Diffracted Wave Field on a Plane

Equation (12) reduces to the more familiar but less general

form of the Rayleigh-Sommerfeld diffraction formula when A >> 1,

U(t,9,2) -i ff U0(±',91;0) e- dCldg'. (14)

The following algebraic substitutions

A(1+6), 6

17



allow us to rewrite Eq. (14) as

0i2ir2 ' 1
uCt, )= -je- j-,±',9';0) (16) e ( T15)

Note that we have imposed no restriction upon the size of the aperture

or the size of the observation space. The only limitation on the above

equation is that the observation plane must be many wavelengths from

the aperture.

The above diffraction formula is a rather unwieldy integral to

solve explicitly for most problems of practical interest. The Fresnel

and Fraunhofer diffraction formulas are obtained by retaining only the

T. first 'two terms in the bii;omial expansion for the quantity

= + [(t2+92)/22 + (" 2+9t 2)/22 -

However, severe restrictions are then imposed upon the size of the

aperture and the region over which the calculations are valid in the

observation pla.1 e. In order that we do not impose these restictions,

all terms from che binomial expansion must be retained. This can be

accomplished by rewriting Eq. (15) as the following Fourier transform

integral

i2 i2 i2+ p

u(£,; ) =e i (',f'W) e Z d 'ed', (16)

where the complex quantity

18



1 i24(1
o( , ; ,) = TC' ,g' ;o) e ,(

0 (1+6) (17

can be regarded as a generalized pupil function. T0 (& ,9;O) is the cor-

plex amplitude transmittance of the diffracting aperture (or aperture

function), and all of the terms from the binomial expansion for the

quantity (Z- ), except for the term which was extracted for use as the

Fourier kernel, are lumped together in the quantity P along with any

phase variations in the incident wavefront.

Equation (16) clearly reduces to the conventional Fresnel dif-

fraction formula when a plane wave is incident upon the aperture and

when A is sufficiently large such that i is adequately aprcoximated by

retaining only the first two terms of the binomial expansion.

The Diffracted Wave Field on a Hemisphere

Let us now examine the diffracted wave field on a hemisphere

centered upon the diffracting aperture as illustrated in Fig. 2.4. The

position of an arbit'ary observation point will be specified by the

direction cosines a and a of -ts position vector, and the radius P of

the hemisphere upon which it resides. Note that

a i/f, 8 = P/P, and y = 2/i, (18)

where

p2 = 2 + 92 + 12. (19)

The following algebraic substitutions

= P(l+e); C = (I-P)/ (20)

allow us to rewrite the general Rayleigh-Sommerfeld diffraction formula

19
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Fig. 2.4. Geometrical Relationship Between Incident Beam, Dif-
fracting Aperture, and Observation Hemisphere.
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expressed in Eq. (12) as

ii27r

F -0

r.1 i21t-~Tr [2 1~+7) I eJ (ip) 2  (21)

we now have an exact expression for the diffracted wave field on an

observation hemisphere which is valid throughout the entire half-space

behind the plane of the diffracting aperture.

If we now require that P >> 1 and make the appropriate binomial

expansion for the quantity (i-P), we again obtain a Fourier transform

integral

a;e i21 O-- P" , ;a O)e -i2w(ax' + O"/)dtC j' (22)
-0

where the generalized pupil function is given by

1 i2yrWWo(_', ';a,B) - To(W',9';) (I eC23)

Once again, all of the terms from the binomial expansion for the quan-

tity (i-P), except for the term which was extracted for use as the

Fourier kernel, are lumped together in the quantity ' along with any

phase variations in the incident wavefront.

21



Aberrations of Diffracting Systems

The quantity W in Eqs. (17) and (23) represent phase variations

in the diffracted wavefront emerging from the aperture. Therefore,

can be interpreted as a conventional wavefront aberration function

(Hopkins, 19S0) which is conveniently expressed as a general power

series expansion of the pupil coordinake. and the appropriate field

parameters.

For the case of a rotationally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point to lie on

the 9-axis (5 = 0). The wavefront aberration function can then be

t jwritten as

= W20002  + + W111pa cosO

, ^ +W400P + WO4,O&+ W a1 31Pa
3 COS + W 222p

2a2 C0S2 €

+ + 31  cos

+ higher-order terms, (24)

where p is a normalized field position of the observation point and

is a normalized pupil height.

By equating coefficients of the corresponding terms in the

appropriate binomial expansions and the above wavefront aberration func-

tion, we obtain expressions for the aberration coefficients in terms of

the aperture diameter, the observation distance, and the appropriate

field parameter. These aberrations, which are inherently associated with

the diffraction pro.,ss, are precisely the effects ignored when making

the usual Fresnel and Fraunhofer approximations. Furthermore, these

22
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aberrations have the same functional form as the familiar aberrations

caused by the refraction or reflection process in imperfect imaging

systems.

The expressions for these aberration coefficients are derived

in Appendix A and tabulated in Table 2.1 to enable easy comparison of

several different geometrical configurations of the incident wavefront

and the observation space.

Conside- first a plane wave illuminating the diffracting aper-

ture and a plane observation space. We see from the first column of

Table 2.1 that all aberrations are present except for lateral magnifi-

cation error (Pii) which is absent for all geometrical configurations

because this term of the binomial expansion for I is extracted for use

as the kernel of the Fourier transform integral. It is clear that very

large observation distances are required to reduce defocus (W020 ) to a
A

negligible value. Also, distortion (W3 11) imposes severe restraints

upon the field angle over which the diffracted wave field is accurately

described by the Fourier transform of the aperture function. These

restrictions are the same as those usually imposed during the develop-

ment of the Kirchhoff theory and in most applications of the Rayleigh-

Sommerfeld diffraction theory.

The effect of illuminating the aperture with a spherical wave

converging to the observation plane is to eliminate defocus (W020) and

all orders of spherical aberration (W04 0). This removes the require-

ment for an extremely large observation distance, but the Fourier

23



Table 2.1. Tabulation of Expressions for the Aberration Coefficients
for Several Different Geometrical Configurations.

(a) Incident wavefront.
(b) Observation space.

a. Plane a. Sphere a. Plane a. Sphere

b. Plane b. Plane b. Hemisphere b. Hemisphere

Piston Error y 2 (914ax

W200  2 k -,T k
Defocus A la) 2 0Q) 0____

Lateral Magni-
fication Error 0 0 0 0

will

Piston Error

3rd- rde X )1 -

Spherical /-\ 4 4
Aberration - 0 -T0
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transform of the aperture function is still valid only over a small

region about the optical axis in the observation plane.

Choosing the observation space to be a hemisphere centered upon

the diffracting aperture eliminates field curvature (P22 0), distortion
(W311), and all orders of piston error (W2 00 and W400).

Hence for the case of a spherical incident wave converging to

the intersection of the optical axis and an observation hemisphere,

only coma (P131) and astigmatism (P222) are present. And the values of

the aberration coefficients can be calculated from the relationships

provided in the last column of Table 2.1.

Thus, for a system with an aperture diameter of 1 mm and an

observation hemisphere with a radius of 1 m, we have for X = 0.5 Um and

$max

W131 = 1.25 x 10- 4

W222 a -2.50 x 10- 1. (25)

Hence there is only X/4 of astigmatism at the edge of the field (i.e.,

90 ° field angle).

Similarly for an f/10 system (d/r = 0.1) with an aperture diam-

eter of 5 cm and a maximum field angle of 0.5 (max = 0.00872), we

have for X = 0.5 Pm,

P131 = 0.545

W222 = -0.095. (26)

Hence coma dominates at the edge of the field with a value of

approximately X/2.
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Finally, for an f/10 system with an aperture diameter of 1 cm

and a field size equal to the size of the aperture (i.e., a pair of

f/10 relay lenses 1 cm in diameter), we have for X = 0.5 Um,

W131 = 0.625

W222 = -0.625. (27)

We find slightly more than X/2 of coma and astigmatism at the edge of

the field.

It should be pointed out that in each of the above cases the

radius of the Airy disc in direction cosine space is approximately

equal to 0.001 8max* Hence the off-axis aberrations are of little more

than academic interest unless there is some structure in the aperture

with high spatial frequency content which will diffract light at large

angles from the direction of the incident beam.

However, the above analysis of the aberrations associated with

the diffraction process can be readily applied to holographic systems

or systems containing diffraction gratings.

For example, an f/6 system with a 10-line-per-mm Ronchi ruling

placed in a 40-rn diameter aperture produces the diffraction pattern

shown in Fig. 2.5. The diffracted order at three different field posi-

tions was photographed through a microscope with the following results:

at 8 = 0 no aberrations were apparent; at 0 = 0.04 coma was predominant-

with a value of approximately 5X; and at 8 = 0.10 coma and astigmatism

j both have values of approximately 1SX. These values were estimated by

visual inspection of the aberrated diffracted orders.
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Fig. 2.5. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed in
an f/6 Cone of Light with a 40-mm Diameter.

Magnified images of diffracted orders at various field positions
indicate that coma is predominant for small field angles with
astigmatism also becoming significant at larger field angles.
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By stopping the aperture down to a diameter of 12 mm (f/20

system) and observing the diffracted qrdeis at larger field angles,

astigmatism becomes the predominant aberration as shown in Fig. 2.6.

The sagittal focus lies on the observation hemisphere of radius r and

the medial and tangential surfaces have smaller radii as indicated.

The diffracted order at 0 = 0.020 exhibits about 6A of astigmatism.

This order was observed through focus with the microscope and the mag-

nified images are displayed.

In both of the above examples the observed aberrations are in

good agreement with those predicted from the coefficients presented in

Table 2. 1.

Shift Invariance of the Diffracted Wave Field

We have shown that any departures of the actual diffracted wave

field from that predicted by the simple Fourier transform of the aper-

ture function take the form of conventional wavefront aberrations.

If we neglect these aberrations, Eq. (22) reduces to

ei2 rfb cci1rr 09 I d , g 1V(a,8;P) - v T 0 (&',9';0) e'"('*&'d9'. (28)

But this is merely the Fourier transform of the aperture function mul-

tiplied by a spherical Huygens' wavelet.

i21rP
U(ca,0;:P) = y -- r- {To(&,9; 0) 1. (29)
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Fig. 2.6. Diffraction Pattern of a 10-Line per im Ronchi Ruling Placed
in an f/20 Cone of Light with a 12-mm Diameter.

Magnified images of a diffracted order at different focal
positions indicate that astigmatism is predominant. The
relationship of the sagittal, medial, and tangential sur-
face to the observation hemisphere is also shown.
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This relationship is valid provided that the observation space is a

hemisphere centered on the diffracting aperture and if the incident

radiation is a unit amplitude spherical wave whose center of curvature

lies on the intersection of the observation hemisphere with the z-axis.

Furthermore, if r is large compared to the size of the diffracting

aperture, the Fourier transform relationship is accurate, not merely

over a small region about the z-axis, but instead over the entire

hemisphere.

Now consider the situation where the incident radiation strikes

the diffracting aperture at an angle 00 as illustrated in Fig. 2.7.

This is equivalent to introducing a linear phase variation across the

aperture. By applying the shift theorem (Bracewell, 1965) of Fourier

transform theory to Eq. (29) we find that the complex amplitude distri-

bution on the hemisphere is a function of (a-00),

i2wi
U~'_O~)= Y e ,,,Jr{T(I,P;O) exp[i27io00]}, (30)U(c ,0-8o;fh) ye

where 0 is the direction cosine of the position vector of the observa-

tion point, and 00 is the direction cosine of the position vector of

the undiffracted beam. Note that these direction cosines are obtained

by merely projecting the respective points on the hemisphere back on to

the plane of the aperture and normalizing to a unit radiu. The com-

plex amplitude distribution at an irbitrary point on the hemisphere can

now be said to be a function of the distance of the observation oint

from the undiffracted beam in direction cosine space.
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Fig. 2.7. Geometrical Configuration when the Incident
Beam Strikes the Diffraction Aperture at an
Arbitrary Angle.

31



i \

As a specific example, suppose we have incident light striking

a diffraction grating at an angle 00. The diffracted orders will

strike the observation hemisphere in a cross section which is not a

great circle but instead a latitude slice as shown in Fig. 2.8. Thus

for large angles of incidence the various orders appear to lie in a

straight line only if they are projected down onto the a-$ plane in

direction cosine space. It is therefore clear that varying the angle

of incidence merely shifts the diffracted wave field in direction

cosine space without changing its functional form. This has been veri-

fied experimentally by mounting a diffraction grating at the center of

a transparent hemisphere, placing graph paper on the plane of the dif-

fraction grating (a-$ plane), and scribing appropriate latitude lines

on the hemisphere upon whizh the diffracted orders fall when illumi-

nated with a small laser beam.

Summary

We have developed a very useful treatment of near-field scalar

diffraction theory that yields much more insight than the conventional

Rayleigh-Sommerfeld theory.

By describing the diffraction process in terms of the direction

cosines of the propagating light we have obtained the extremely power-

ful result that the diffracted wave field on an observation hemisphere

is given directly by the Fourier transform of the aperture function.

This allows us to apply the well-known techniques of linear systems

theory that have proven so useful in the area of image formation.

/
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Fig. 2.8. Illustration of the Position of the
Diffracted Orders in Real Space and
Direction Cosine Space.
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Furthermore, we have shown that any departures of the actual

diffracted wave field from those predicted by the Fourier transform

relationship take the form of conventional aberrations whose behavior

is well understood in terms of the dimensions of the diffraction aper-

ture, the radius of the observation hemisphere, and the appropriate

field parameters.
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CHAPTER 3

SURFACE SCATTER THEORY

In the following treatment the scattering of light from optical

elements is considered to be solely a surface phenomenon. It is recog-

nized that bulk scattering mechanisms, such as photon-phonon interac-

tions (Bloembergen and Shen, 1965) and scattering from free electrons

(Vachaspati, 1964), can exist if the substrate material is not perfectly

conducting. The excitation of surface plasmons has also been suggested

by several investigators as contributing to short wavelength scattering

from polished metal surfaces (Beaglehole, 1970; Beaglehole and Hunderi,

1970; Crowell and Ritchie, 1970; Elson and Ritchie, 1971; and Daud,

Savary, and Robin, 1972). However, the above effects are believed to

be small for most visible and infrared radiation scattered from metal

surfaces.

Surface Scatter Phenomena as a Diffraction Process

In Chapter 2 it was shown that, under the proper circumstances,

the diffracted wave field on a hemisphere is given directly by the

Fourier transform of the complex amplitude transmittance of the diffrac-

ting aperture. Usually a diffracting aperture consists of a "hole" in

some opaque surface. This is a binary amplitude diffracting aperture.

Clearly, a continuous amplitude diffracting aperture (a piece of photo-

in graphic film, for example) can also exist. A more general situation

is the complex diffracting aperture which exhibits both amplitude and
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phase variations. It is these phase perturbations that lead to scat-

tered radiation. Surface scatter phenomena can thus be describad as

a diffraction process in which the pupil function has random phase

variations in addition to any existing amplitude variations. The dif-

fraction theory of the previous chapter can therefore be applied

directly to the problem of predicting the complex amplitude distribution

on an observation hemisphere of radius r resulting from an incident

beam of light being reflected from a rough surface.

The System Pupil Function

A simple treatment of surface scatter theory can be formulated

by considering the effect of the scattering surface to be a space-

dependent modifier, or random component, of the effective pupil func-

tion of the system. The disturbance emerging from the scattering sur-

face is then given by

uom;O) f= aOp(k,q;o) - aoPL(xY:O)PR( ,Y;O). (31)

Here the pupil function of the system producing the incident

beam is given by

pL(x,y;O) = aL(x,y;O) e , (32)

where aL describes the amplitude variations across the exit pupil of

the system, and WL describes any phase variations or aberrations in

the wavefront of the incident beam.

The random component of the pupil function due to the scatter-

ing surface similarly has an amplitude and phase component
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PR( ,f;o) = .R(,P;O) e . (33)

Here R is the reflectance of the scattering surface and WR is the sur-

face height. Note that the phase variations on the reflected wavefront

are twice as large as the actual variations on the reflecting surface.

Figure 3.1 illustrates the surface heigit variations, WR, as a

function of distance along the surface. This surface profile has

associated with it an autocovariance function and a surface height

distribution function as indicated.

Autocovariance
function

Surface __

height Surface
distribution height

Fig. 3.1. Illustration of Surface Height Variations and Associated
Statistical Parameters.

I
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Intensity Distribution of a Scattering System

The results of the previous chapter, [Eq. (29)], indicate that

the complex amplitude distribution on the observation hemisphere is

given directly by the Fourier transform of Uo(0,9O)
given drectlyb

U(,0- e 9{Uo (1,9 ; 0) 1 (34)u~LB;')= y: .

The total reflected flux 0 is obtained by applying Rayleigh's

theorem from Fourier transform theory

6 1.2 JUC1,8;i')12dtda . a02 f F '9;)1ad
ff ffT
Go -an (35)

Noting that dw = dsdd/y, the radiant intensity of the scattering

system can be written as

,B) - IT = IU(a,;P)l2  - ao2y,{CDp;O))1j2. .
(36)

Utilizing the autocorrelation theorem of Fourier transform theory, this

is equivalent to

Iac*, a PZ a'9- (37)

For the special case of a Lambertian surface, the autocorrela-

tion function approaches a Dirac 6-function; hence, its Fourier trans-

form is constant and we obtain

I L (aj) = yK, K = constant (38)

which is consistent with Lambert's cosine law.
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The System Spread Function

Following the standard procedure used in image evaluation, the

effective transfer function of the scattering system is defined as the

normalized autocorrelation of the pupil function

OD

ICOo A"®)*_ I-i -;~ad
=C-O (39)

Uf IP(-f';°) 12'd i'
-. 0

The effective spread function of the scattering system is now

defined in the usual way as the Fourier transform of the transfer

function

COO

Direct substitution from Eq. (3S) and Eq. (38) results in the following

expression for the effective spread function in t4rms of the radiant

intensity of the scattering system

d
8 (cI, 8) = IaJ)= (1_c2- 2 ) (41)

/ Scattering from Optical Surfaces

Let the height variations P' of a given illuminated area on aR
scattering surface be a two-dimensional sample function WRj(i,P;0). A
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random process, fR(5,,^;O), is made up of an ensemble of such functions

as shown in Fig. 3.2. For fixed spatial coordinates, PR(}I,^1;0) is a

random variable. And, for a specific sample function with fixed

spatial coordinates, W (Xl,gl;0) is a single number.

x iw(x ,Y) I

Ri

2 1 2

1 I

;119,2)

Fig. 3.2. An Ensemble of Two-dimensional Sample Functions Wi( ,&)
Representing Surface Height Variations Constitutes a Random
Process W( ,b)J.
Two random variables, F , and W(2,92) with fixed

spatial coordinates are also shown.
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" The Statistical Properties of an Optical Surface

We are primarily interested in the scattering behavior of opti-

cal surfaces. The following assumptions are made concerning the sta-

tistical properties of an optical surface prepared by conventional

fabrication techniques on ordinary optical mateiials:

1. The reflectance R is constant over the entire surface. This

assumption is not essential but it is reasonable and furthermore it has

been shown by Shack (1967) that phase fluctuations will dominate over

amplitude fluctuations in their combined effect on the spread fznction.

2. PR(.,9;0) is a single-valued Gaussian random process.

3. PR(e,9;0) is at least locally stationary in the statistical

sense (i.e., surface is homogeneous and isotropic).

4. The random variables WR( 1,9 1;0) and WR(x2,92;0), produced by

any two fixed pairs of spatial coordinates, are jointly normal.

S. PR( ,9;0) is weakly ergodic (i.e., the mean and autocorrela-

tion function determined by space averages using a single sample func-

tion WR (&,,;O) are the same as those determined by ensemble averages).
ti4
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The Transfer Function of a Scattering Surface

Substituting Eq. (31) into Eq. (39) we obtain

ff ~aL ei2ff[WL1-WL2] ei47T(WRZ-WR2] Id~JJ aLlaL2 0 e dx'dij

JJ 1)~1 1dxdy(42)

where

aLl - aL(xiy' ';O)

aL2  = aLCx-, D'-; 0)

WLi WL(XyO

The above expression for the transfer function contains the ran-

dom variables WRi and WR2; therefore, taking the expected value we have

.® i2w[WLZ-WL2] i4 f[WRI-WR2]

J J LlaL2e E e dZ'd'

E{jr(X,Y;O)) =0 (44)

ff aL 2 ''
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Since the random variables involved are assumed to be stationary,

the expected value under the integral is independent of ' and 9' and

can be taken outside the integral

i21r[PL1-WL21J laL2e
E'{JV~,g,;o) = "" f• aLC2d4'd()

-00

We now recognize the normalized autocorrelation function in the above

equation to be the transfer function of the optical system producing the

incident beam

f J aLl aL2 e dpdD

fc ion L (-, e sra0) WR2* (46)

SThe average quantity in Eq. (45) is therefore the equivalent transfer
I function of the scattering surface

R Uc' '9;°0) = E '(47)

But this is merely the joint characteristic function (Papoulis,

1965, p. 225) of the two random variables PR2 and R2 'Rand

WR2 are jointly normal random variables, it can be shown
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that (see Papoulis, 1965, p. 226)

E{e}i4 [PRj"R2] I = ei4T(Il1-2)e8 r2 (a12-2C12+02
2) (48)

where

C12  E'{(PjR-ll)(PR2-n 2 )} (49)

is the covariance function of the random variables PR1 and /RV But WR1

and WR2 are identical functions merely displaced from one another; hence

1= a2 = ap p l = n2 (50)

and

C12  = Cp(x,) autocovariance of (51).iR
The equivalent transfer function of the scattering surface is thus given

by

2 - .iL "2

jR(.k,P;0) = e W (52)

where a-2 is the variance of the surface height distribution function
W

and Cp(i-,P) is the two-dimensional autocovariance function of the

surface.

Considerable insight into the scattering process can now be

obtained by considering the nature of this transfer function. The auto-

covariance function approaches the value aOp2 as the displacement
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approaches zero. The equivalent transfer function thus approaches unity

as expected. As the displacement approaches infinity the autocovariance

function approaches zero and the -equivalent transfer- function

approaches a plateau of height exp[-(2-fa)2].

The equivalent transfer function of the scattering surface can

thus be regarded as the sum of a constant component and a bell-shaped

component as shown in Fig. 3.3(a). Equation (52) can therefore be

rewritten as

.Jr(i, ;0) = A + BQ( ,;O), (53)

where

A = e(W) (54)

B e - e(W) (55)

e 4(,€ (56).
(4'a ,)2

e -1

The Spread Function of a Scattering Surface

The significance of this interpretation of the equivalent trans-

fer function of the scattering surface is dramatically shown by the

inferred properties of the corresponding spread function. Since the
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Fig. 3.3. Illustration of the Effective Transfer Function
and Spread Function of a Scattering Surface.

(a) Transfer function.
(b) Spread function.
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transfer 'function is the sum of two separate components, the equivalent

spread function of the scattering surface is the sum of the inverse

Fourier transforms of the two component functions,

- r-'{ (&,;O)} = A6(a,8; ) +r + sca,O; )

(57)
where

The constant component transforms into a delta function, and the bell-

shaped component transforms into a bell-shaped scattering function as

shown in Fig. 3.3(b). Hence the scattering surface reflects an incident

beam of light as a specularly-reflected beam of diminished intensity

surrounded by a halo of scattered light. Furthermore, the relative

power distribution between the specular component and the scattered

component of the effective spread fun:tion are given by the quantities

A and B respectively.

Note that as more and more light is scattered, energy is

transferred from the specular component of the spread function into

Lhe scattered component of the spread function. For a perfectly

Lambertian reflector the specular component disappears completely

from the spread function.

A Shift-invariant Scattering Function

In general, the scattered light distribution on an observa-

tion hemisphere will change with the angle of the incident light just

as the point spread function of an optical imaging system will, in
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general, vary with the field position of the point source. However,

the analysis of imaging systems is greatly simplified by assuming an

isoplanatic system in which the point spread function does not change

with field position (and this is a reasonable assumption for many

practical imaging systems). Similarly, the analysis of light scatter-

ing systems will be greatly simplified if they can be shown to be

shift-invariant (i.e., if the shape of the scattering function does

not change with the angle of incidence).

From the discussion in the previous section it is clear that

the scattered light distribution on an observation hemisphere will

appear to consist of the sum of two components, a core which is the

delta function convolved with the spread function of the optical

system producing the incident beam, and a scattering function which

is the bell-shaped halo convolved with the spread function of the

optical system.

In Fig. 3.4 we have merely replaced the diffracting aperture

of Fig. 2.7, page 31, with a scattering surface and the geometry of

the measurements has been folded about the reflecting plane. Hence,

we have the incident beam striking the scattered surface at some angle

of incidence, a specularly-reflected beam striking the observation

hemisphere, and the scattered light distribution being sampled at an

.arbitrary point with direction cosine coordinates a and a. The scat-

tered light distribution on the hemisphere will, in general, change

shape drastically with angle of incidence--becoming quite skewed and

asymmetrical at large angles of incidence. However, our theory
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indicates that the data collected on the hemisphere should be plotted

as a function of the direction cosines of the position vector of the

observation point. For certain surfaces with well-behaved statistics,

this new scattering function will not change shape but will merely be

shifted in direction cosine space with changes in angle of incidence.

The four-dimensional Bidirectional Reflectance Distribution Function

(BRDF), which is the basic quantity that completely characterizes the

scattering properties of a surface (see Appendix B), will therefore

degenerate into a single two-dimensional spread function. This is a

rather significant development which has profound implications regard-

ing the quantity of data required to completely characterize a scatter-

ing surface. However, it remains to be experimentally verified that

scattering surfaces of practical interest obey these predictions.

The Inverse Scattering Problem

The problem of determining surface characteristics from scat-

tered light measurements is frequently referred to as the inverse

scattering problem. A general treatment of electromagnetic inverse

scattering has been discussed by Bojarski (1971). Several attempts

have been made (Daniels, 1961; Fung and Moore, 1964; and Barrick,

1965) to determine properties of the lunar surface by applying

inverse scattering techniques to radar returns from the moon. Bennett

and Bennett (1967) were able to obtain the rms roughness and autocovar-

iance length of the surface structure of mirrors by assuming a Gaussian

shape for both the surface height distribution function and the surface

autocovariance function. More recently Scheele (1973) met with little
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success in attempting to ascertain under what conditions the exact

autocovariance function can be obtained from scattered light data.

The treatment presented in this chapter describes surface

scatter phenomena as a linear, shift-invariant process which is

completely characterized by the effective transfer function of the

scattering surface. Furthermore, for a large class of well-behaved

surfaces this transfer function is described only in terms cf the rms

surface roughness and the surface autocovariance function and hence

provides an elegant solution to the inverse scattering problem.

The surface autocovariance function is thus obtained from

scattered light data by rewriting Eq. (52) as

Cw(x,y) ( L) , + a (58)

where

The rms surface roughness is given by

X knT1- (60)
'W 41T 1-B

where B (the total integrated scatter expressed as a fraction of the

total reflected light) is obtained by applying numerical integration

techniques upon the measured data describing the sca;ttered light dis-

tribution. Note that although we are limited by a scalar theory, we
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have made no explicit approximations regarding the size of the surface

variations. If we make a smooth surface approximation (aW<<), then

the total integrated scatter is small (B<<l) and we obtain the usual

expression for the rms surface roughness'

A - 4 . (61)

Wavelength Dependence of the Scattering Function

A successful theoretical model of surface scatter phenomena

must provide a method of determining the wavelength dependence of the

scattered light characteristics. This would allow one to infer the

scatteiing behavior of a surface for any desired wavelength from a

limited amount of data obtained at a given wavelength. Since the scat-

tering mechanism is a diffraction process, it is clear that light of a

particular wavelength scattered in a given direction corresponds to

surface structure of a given spatial frequency. This spatial frequency

component of the surface structure will scatter light of some other

wavelength into a different direction. An analytical expression de-

scribing the wavelength dependence of the scattering function must

therefore involve a change in the scatter angle with wavelength as

well as the expected change in scattered intensity. Thus, if we

wish to determine how the relative intensity at a fixed scatter angle

varies with wavelength, the surface characteristics corresponding to

the appropriate spatial frequency components of the surface structure

must be known for each wavelength of interest.
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The above discussion perhaps explains the failure of various

experimental investigators to agree in their attempts to establish the

wavelength scaling behavior from empirical observations of scattered

light data. Shack and DeBell (1974) made scattered light measurements

on mirror surfaces at two visible wavelengths. Their data indicated

a 1/A2 wavelength scaling law. Leinert and KlUpelberg (1974) also made

mirror scatter measurements at two wavelengths in the visible. They

found a 1/A wavelength dependence. Perkin-Elmer (1975) mirror scatter

measurements were made at a visible wavelength and at X=10pm. This

data showed a 1/A wavelength scaling behavior.

The transfer function characterization of scattered surfaces

developed in the previous section offers a simple means of determining

this wavelength dependence. Once the surface characteristics are known

[whether from direct measurement or calculated from scattered light data

by means of Eq. (58) and Eq. (60)], the same theory provides an equally

simple method of predicting the scattering function at any desired wave-

length.

Since this technique involves numerical computations on sampled

data, an analytical expression for the wavelength scaling law is not

required. However, in order to gain more insight into the nature of

surface scatter phenomena, we will proceed to derive the wavelength

scaling law for the special case of a normally incident beam upon a

smooth surface (aW<X). Under this condition the surface transfer func-

tion expressed in terms of real pupil coordinates x and y is given by
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R(x,y) =A + BQ(x,y) (62)

where

A 1 -(63)

and

CW(X,Y)Q(X, Y) = )(65)

aoW2

From Eq. (57), we see that the scattering function for a particular

wavelength is given by

=~~ox k- ) a1 'Cw(u'Dxj+ (66)

Applying the similarity theorem of Fourier transform theory we obtain

S~,;)= ,42 (67)

where

I-1 Cw(&,i) (68)

If we now scale the wavelength by a factor a, we obtain

m )y2  /a _ (9
S(aO;aX) = A a=X =5 YX av a ;A) (9

Therefore, the appropriate wavelength scaling law for smooth surfaces

is given by

s ,;a) ;). (70)

Note that, in addition to the 1/a 4 change in magnitude, the width of the

scattering function in direction cosine space is scaled by the factor a.
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CHAPTER 4

SURFACE SCATTER MEASUREMENTS

Apparatus

An instrument has been designed and built at the Optical

Sciences Center for making scattered light measurements on a hemisphere

as described in the previous chapter. A schematic diagram of this

apparatus is shown in Fig. 4.1. The incident light passes through a

chopper so that synchronous detection with a PAR lock-in amplifier can

be made. The mechanical apparatus shown in Fig. 4.2 is located in a

small photometric darkroom in which the experiment is conducted. A

movable arm with folding mirrors can be positioned to direct the inci-

dent beam onto the sample at any desired angle. A lens positioned on

this arm focuses the incident radiation onto the hemisphere mapped out

by the detector; hence, the geometrical configuration is consistent

with that illustrated in Fig. 3.4 of the previous chapter. Two sepa-

rate driving mechanisms allow us to measure the scattered light distri-

bution over the entire hemisphere bounded by the plane of the sample.

The Light Source

The light source employed is a Spectra-Physics Model 165 Argon

Ion Laser. The laser is operated with a light-regulated, single-

frequency output which assures intensity regulation to within
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Fig. 4.1. Schematic Diagram of Scatter Measurement Apparatus.
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Fig. 4.2. Apparatus for Measuring Scattered Light Distribution from
Optical Surfaces.

(1) Precision rotary table, (2) worm gear drive for arm
supporting detector, (3) photomultiplier tube and fiber-
optic probe, (4) sample holder, (5) movable arm with fold-
ing mirrors and lens for directing and focusing incident
beam (6) P.A.R, lock-in amplifier, (7) high voltage power
supply for PMT.
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one percent. The measurements were made with approximately 20 mw of

power in the incident beam at wavelengths of 0.5145 pm and 0.4579 Pm.

An He-Ne laser was also available for making measurements at a wave-

length of 0.6328 pm.

The Detector Unit

The detector is a Phillips one-inch, end-on photomultiplier

tube (PMT) having an S-20 photocathode. Light reaches the photomulti-

plier by way of a rigid fiber-optic probe. Such a probe offers several

distinct advantages in light sampling. In addition to allowing

increased angular resolution throughout the sampling space, and

enabling us to sample within one degree of the incident or specu-

larly reflected beams, it provides the ability to control the field

of view of the detector for the purpose of stray light rejection.

The original configuration consisted of a rigid fiber-optic

bundle bent such that one end was pointed toward the illuminated

spot on the sample. This end of the bundle thus acted as the col-

lecting aperture for the detection system. The other end of the

fiber-optic bundle protruded into the photomultiplier tube housing

followed by a series of baffles to limit the field of view of the

detector as shown in Fig. 4.3(a). This resulted in a detector

response which had a Gaussian dependence upon field angle.

However, by introducing a small collecting lens and a field

stop in front of the fiber-optic bundle as shown in Fig. 4.3(b), the

baffles can be eliminated and a well-defined field of view of any

desired size can be obtained by properly choosing the size of the
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Fig. 4.3. Illustration of Detector Probe Unit.

(a) Previous Configuration.
(b) New Configuration.
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field stop. This is more clearly illustrated in Fig. 4.4. A coated

doublet with a 10-mm focal length was edged down and mounted in a

black anodized brass tube 3-mm in diameter. A field stop allowing

a 5-degree field of view was fabricated and inserted into the tube

at the rear focal plane of the lens. This assembly was then posi-

tioned onto the end of the fiber-optic bundle. The detector response

from a small (point source) light source was then recorded as a

function of fii.d angle for both detector probe configurations.

The results are displayed for comparison in Fig. 4.5. Both the flat

response and the sharp cutoff obtained with the modified unit are

highly desirable features. The flat response promises to eliminate

signal variations due to slight misalignment or wobble in the mechani-

cal instrument while scanning over the hemisphere. The ability

to keep the field of view small with a very sharp cutoff is essential

for stray light rejection.

The scattered light flux from a polished surface varies by

several orders of magnitude over the angular range to be measured.

Hence the linearity of the PMT was measured using a calibrated neu-

tral density wedge and several known neutral density filters to vary

the incident flux. The resulting linearity curve is shown in Fig.

4.6 and indicates a deviation of less than 1% over a range of five

orders of magnitude of the incident flux.
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Fig. 4.4. Detailed Illustration of New Fiber-Optic Probe.
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Fig. 4.5. Detector Response as a Function of Field Angle for Detector
Configurations Shown in Fig. 4.3.

(a) Detector configuration shown in Fig. 4.3(a).
(b) Detector configuration shown in Fig. 4.3(b).
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The Scanning Mechanism

The mechanical apparatus for measuring the angular distribu-

tion of light scattered from optical surfaces was shown in Fig. 4.2.

The detector probe unit is mounted on a rigid arm that can be rotated

in either of two orthogonal directions. Rotation about a vertical

axis is accomplished by means of a massive precision rotary table.

The rigid arm is attached to the rotary table by means of a worm gear

arrangement that allows rotation about the horizontal axis. These

two separate driving mechanisms allow us to measure the scattered

light distribution over the entire hemisphere bounded by the plane of

the sample. However, in order to limit the quantity of data to be

collected, the scattered radiation field is sampled in two principal

directions. These include the entire plane of incidence and a plane

perpendicular to both the plane of incidence and the plane of the

sample which also passes through the intersection of the specular beam

with the observation hemisphere (see Fig. 4.7). This particular sam-

pling procedure was chosen because each sampling direction then involves

one fixed coordinate in direction cosine space. Furthermore, the

apparatus was designed such that each of the two independent drive

mechanisms corresponds directly to a given coordinate in direction

cosine spacc. Hence for a given observation point determined by the

angles 0 and 0 displayed on the apparatus, the corresponding coordinates

in direction cosine space are given by

a = cosO sino

= sine. (71)
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Planes in which the Scattered Light Field
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The Incident Beam

A large movable arm with appropriate folding mirrors is used

to direct the incident beam onto the sample at any desired angle of

- incidence. The original configuration included a single lens posi-

tioned on this arm to focus the incident radiation onto the hemisphere

mapped out by the detector as shown in Fig. 4.8. This configuration

allowed scattered light from the folding mirror M3 to reach the observa-

tion hemisphere after being reflected from the test sample. The scat-

tered light level from M3 often exceeded that from the test sample,

thus rendering the scattered light data at small observation angles

completely useless (Shack and DeBell, 1974).

An improved configuration is shown in Fig. 4.9. Immediately

following the last folding mirror the beam is focused onto a pinhole

which acts as a spatial filter. This spatial filter assembly elimi-

nates from the beam incident upon the stmple any light scattered from

the folding mirrors as well as any diffraction effects from the chopper

blade. Lens L2 then forms an image of the pinhole upon the hemisphere

mapped out by the collecting aperture of the scanning fiber-optic

probe. The dramatic improvement obtained with this configuration is

illustrated by omparing Fig. 4.10(a) with Fig. 4.10(b). These photo-

graphs were obtained by placing a piece of photographic film in the

observation space at position B in Fig. 4.9 along with a small obstruc-

tion to block the specular beam. The six bright spots in Fig. 4.10(b)

were the weld marks on the back side of the pinhole which were illumi-

nated by the light reflected from L2 then imaged by L2 onto the observa-

tion space.
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Fig. 4.9. Improved Configuration of Beam-forming Optics.
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Fig. 4.10. Photograph of Stray Light Reaching the Observation Space
for:

(a) Original configuration of beam-forming optics.
(b) Improved configuration of beam-forming optics.
(c) Improved configuration with black pinhole.
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The acquisition of a pinhole in a black substrate with no visi-

ble weld joints resulted in the photograph displayed in Fig. 4.10(c).

Based upon measurements made with the instrument with no sample in

place, the stray light in the observation space has thus been reduced

by almost two orders of magnitude.

The aberrations associated with the scattered light distribu-

tion on the observation hemisphere were considered in determining the

geometrical parameters of the incident beam and the detector scanning

mechanism. The aberration coefficients presented in the last column of

Table 2.1 yield the following values for coma and astigmatism at the

edge of the field (e = 900) when a spot 4 mm in diameter is illuminated

on the sample and the observation distance is 250 mm,

W131 = 0.128

W222 = 16. (72)

Although a substantial amount of astigmatism exists at the edge of the

field, our tolerance is quite loose as we have a 3 mm diameter collec-

ting aperture on the fiber-optic probe.

Experimental Procedures

The goal rf the research reported here waL to examine the

scattering properties of samples whose surface characteristics span

those typically produced with optical fabrication techniques.
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Sample Preparation

Surface preparation techniques used to produce a set of samples

are outlined in Table 4.1. All samples were finished to be nominally

flat.

The prepared samples were cleaned prior to coating with alumi-

num. Cleaning consisted of careful washing with Liquinox, a mild

detergent, under very warm, filtered tap water. Samples were then

mounted in a sample holder while held in distilled water. Once in a

holder, samples were moved to an ultrasonic cleaner filled with dis-

tilled water for rinsing. Once rinsed the samples were set to dry in a

dust-free atmosphere. Dry samples were removed from the sample holders

and placed in individual boxes ard supported by the edge of their back-

side. Mott (1971) used a similar cleaning technique, which he

describes more completely.

Cleaned dry samples were then placed in a high vacuum chamber

and coated to near opacity with pure aluminum. The coating technique

varied from standard procedures only in that excessive care was taken

to allow the chamber to reach a pressure below 2 x 10-6 torr prior to

coating. The samples were allowed to cool to room temperature prior to

removal from the chamber. Each coating run contained ten different

( samples. Once coated, samples were returned to their individual storaie

boxes. After all samples were coated, the best samples of each type

were selected for measurement. This selection was made on the basis of

individual inspection of each sample while held under a microscope

illuminator in an otherwise dark room. Samples that had coating non-

uniformities, sleeks or pinholes were rejected as were those with
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waterspots, large scratches, or otherwise questionable appearance.

Prior to each set of scatter measurements, samples were again individu-

ally inspected for flaws. Dust was removed using a commercially avail-

able pressurized air can. After each sample was measured for scatter,

it was returned to its individual box.

System Alignment

Before any meaningful scatter measurements could be made it was

necessary to systematically align the entire system.

The incident laser beam was first adjusted to lie in a horizon-

tal plane. Then the mechanical apparatus was positioned such that the

axis of rotation of the movable arm supporting the folding mirrors (see

Fig. 4.9) was colinear with the incident beam. This was accomplished

by means of four massive leveling screws at the base of the stand sup-

porting the entire apparatus.

With mirror Ml removed the laser beam passed through the small

hole in the center of the bearings upon which the movable arm rotates.

This assured that the incident beam was indeed colinear with the axis

of rotation and furthermore allowed the sample holder, which was

mounted on a shaft passing through the axis of the precision rotary

table, to be accurately positioned with the center of the scattering

surface lying at the intersection of these two perpendicular axes. The

precision rotary table was then positioned such that the beam was

accurately centered on the detector at position A, then rotated pre-

cisely 900, leaving the detector at position B.
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Mirror M1 was then put into place and adjusted until the laser

beam was centered upon mirror M2. Similarly, M2 was adjusted until the

beam was centered upon M3.

With the lenses LI and L2 and the pinhole P removed from the

system, mirror M3 and mirror M2 were systematically adjusted until the

beam was centered upon both the sample holder and the detector at

position B.

The incident beam was thus accurately positioned perpendicular

to the axis of rotation of the movable arm. A polished sample was then

placed in the holder and adjusted until the specularly-reflected beam

returned precisely along the incident beam. The sample holder was thus

accurately positioned perpendicular to the incident beam and locked

into this position.

Lenses Li and L2 were then placed in the beam and properly cen-

tered. And finally, the pinhole P was accurately positioned at the

back focal position of lens Li.

With the system properly aligned, the movable arm could be

rotated to direct the incident beam at any desired angle without

requiring uther adjustments to keep the beam centered upon the sample.

An additional requirement was that the PMT with its associated

fiber-optic probe be positioned and aligned such that the field of view

of the PMT remain accurately centered on the illuminated portion of the

* sample throughout the entire range of its scanning motion. Provisions

were therefore made to allow three degrees of freedom (one translation

*, and two rotation) in adjusting the position and orientation of the PMT
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housing. Removing the PMT from its housing and illuminating the fiber-

optic probe from the back side greatly facilitated this alignment pro-

cedure as it allowed one to directly observe the field of view on the

sample holder while making the necessary adjustments.

Measurement Technique

The sample to be measured was placed in the holder and the mov-

able arm positioned to achieve the desired angle of incidence. A cali-

brated attenuator was then placed in the incident beam and the detector

centered on the specularly-reflected beam. The collecting aperture of

the fiber-optic probe was large enough to collect the entire specular

beam; hence, the output signal, V., of the PMT in this position was

proportional to the total flux in the specular beam.

The detector was then moved a known angular distance (approxi-

mately one degree) from the specular beam and the attenuator removed.

A profile of the scattered light distribution was then measured by

scanning the observazion hemisphere with the fiber-optic probe.

Approximately 30 separate readings were taken at different angular

positions between the specular beam and the plane of the sample. These

readings constitute the raw data.

The sample was then removed and the incident beam allowed to

pass unobstructed through the sample holder and into a black absorbing

Rayleigh horn. Background measurements were then made along the s 'e

profile as above and subtracted from the raw data. These background

measurements were found to be completely negligible in most instances.
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The data now represents the spread function of the scattering

system, which is made up of the spread function of the scattering

surface convolved with the spread function of the optical system pro-

ducing the incident beam. These are shown in Fig. 4.11.

The spread function of the incident beam is then measured by

again placing the calibrated attenuator in the incident beam and cen-

tering the detector on the direct beam passing through the empty sample

holder. Since the collecting aperture of the fiber-optic probe is

large enough to collect the entire incident beam, the output signal,

V0, of the PMr in this position is proportional to the total flux in

the incident beam. The detector is then moved a known angular dis-

tance (approximately one degree) from the direct beam and the atten-

uator removed. A profile of tne incident beam is then measured. These

readings rapidly diminish to zero within five degrees of the peak value.

Since the spread function of the incident beam [Fig. 4.11(a)] is

narrow compared to the scattering function of the surface [Fig. 4.11(b)],

the scattered portion of the surface spread function is virtually un-

changed by the convolution operation while the delta function component

merely replicates the beam spread function. The desired scattering

function can thus be obtained by subtracting the beam spread function

readings from the raw data.

Presentation of the Data

It is customary to present scattered light data from diffusely

reflecting surfaces in a polar format. Three experimental curves and

one ideal reference curve are illustrated in Fig. 4.12. Note that we
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(a)

o00

(b)
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S (a,8;r") Cc)

Fig. 4.11. Illustration of Components Comprising
System Spread Function.

(a) Spread Function of Incident Beam.
(b) Spread Function of Scattering Surface.
(c) Spread Function of Scattering System.
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Fig. 4.12. Polar Plot of Relative Intensity as a Function of
Scattering Angle.
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have plotted the quantity Vo A-- along the radial coordinates where
0

Atw is the solid angle subtended by the fiber-optic probe. Since V is

proportional to the power collected by the fiber-optic probe and V0

is proportional to the total power in the incident beam, this quantity

is the relative intensity cf the scattered light distribution (i.e.,

scattered intensity normalized by the incident power). For smooth

mi.rror surfaces this same quantity is usually plotted in a cartesian

format as a function of the scattering angle as shown in Fig. 4.13.

Dividing this data by the cosine of the scattering angle

(y = cose), we obtain

v P/(A EA) .Dr (73)

V0 A P01A E

where A is the illuminated area on the sample. This quantity is

equivl.lent to the reflected radiance in the sampled direction divided

by the incident irradiance, which is precisely the manner in which the

BRDF is defined. The resulting scattering curve, exhibited in Fig.

4.14, is therefore a one-dimensional profile of the four-dimensional

BRDF. Also, in accordance with our theory we are plotting this function

versus the quantity B-8o , which is the distance of the observation

point from he specular beam in direction cosine space.

It can be readily shown that the BRDF is merely an infinite

family of two-dimensional spread functions which are scaled by the

total reflectance of the surface,
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BRDF = 2 RJ(aO). (74)

Since we measure only the scattered component of the spread function

(See Eq. 57) and are primarily concerned with the scattered light

behavior rather than the total reflectance, the scattering function

can be written as

S(aV(,) (75)
R VOAw y

All measurements are thus normalized by the reflectance of the surface

so it does not appear to have better scattering characteristics due to

its lower reflectance.

The MgO surface, which is a fairly good diffuse reflectance

standard, yields a straight horizontal line as a Lambertian reflector

should. Since the radiance of a Lambertian source is given by

M
L M (76)

where M is the total emittance into a hemisphere, the value of the

MgO scattering function can be shown to be 1 A Lambertian surface

of known reflectance, RL, thus makes a convenient reference sample

and the scattering function of a test sample of reflectance, R, is

given by

S(a, ) - ... (77)
R VL nY

where VL is tre PMT voltage signal from the Lambertian reference sur-

face at a=a=O. A freshly coated MgO sample with a total

9
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hemispherical reflectance RL = 0.98 was routinely used as a reference

sample for the remainder of the measurements. Unless stated otherwise,

the scattering function of Eq. (77) will be used for presenting the

data in this dissertation. Furthermore, in accordance with the theory

presented in Chapter 2, this scattering function will be plotted as a

function of distance from the specular beam in direction cosine space

(0-0o) as shown in Fig. 4.15. Note that by plotting both ordinate and

abscissa on a log scale the scattering function for the polished sample

takes the form of a straight line.
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CHAPTER 5

DATA AND RESULTS

The angular distribution of scattered light measured from a

variety of surfaces, angles of incidence, and wavelengths are reported

in this chapter. The results obtained are then compared with theoreti-

cal predictions.

Surface Roughness Effects

The scattered light profile for a normally incident beam on a

variety of samples with a wide range of rms surface roughness values

are exhibited in Fig. 5.1. Note that the polished samples are charac-

terized by a straight line curve with a slope between -3/2 and -2. The

ground glass samples yield curves which are flat for a substantial

angular range before falling off rapidly at the larger angles. We

were unable to produce samples that satisfactorily bridged the obvious

gap in the data between the ground and polished samples. A separate

study of the grinding and polishing process on fused silica (Shevlin,

1974) utilizing elec-,ron microscopic examination of the surface also

indicates a very rapid change in the surface character between the fine

grind and the polishing operation. This is dramatically illustrated in

Fig. 5.2.
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It is also instructive to compare the scattering curves

resulting from special materials or unusual fabrication techniques with

those of more conventional optical surfaces. For example, the results

of scattering measurements on a polished beryllium sample and an

ionically-polished fused quartz sample are shown in Fig. 5.3 along with

some curves from conventional optical surfaces.

Incident Angle Effects

Rather extensive scatter measurements have been made on two

representative surfaces. One is a ground glass surface (Sample #172)

which is a very diffuse reflector. The other is an optically-polished

surface (Sample #200) which is a nice specular reflector. Both samples

were coated with aluminum prior to making the measurements. Four

separate scattering profiles from the specular beam to the plane of the

sample (see Fig. 4.7) were measured at several angles of incidence.

The backszattering profile of the scattered light distribution

for these two samples is shown in Fig. 5.4 for several different angles

of incidence. For the polished sample, the various curves coincide

almost perfectly for angles of incidence between zero and 600. Hence,

it is apparent that the scattering function does not appreciably change

with the angle of incidence. The corresponding curves for the rough

sample coincide for a substantial range of angles then begin to depart

somewhat at the large angles.

The four separate profiles of the scattered light distribution

fro,. the same two samples with the incident beam at 45* are shown in
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Fig. 5.4. Comparison of Scatter Profiles for Different Incident Angles.
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Fig. 5.5. Again the curves for the polished sample coincide almost

perfectly, suggesting a rotationally-symmetric distribution in direc-

tion cosine space. Some asymmetry is noted in the scattered light

distribution from the rough sample.

The data on Figs. 5.4 and 5.5 confirm that for a certain class

of surfaces (in which optically-polished glass is definitely a member,

and ground glass can perhaps be included to a lesser extent), the scat-

tering properties are indeed shift invariant as predicted by the theory

presented in Chapter , and can be completely characterized by a the

set of measurements at a fixed angle of incidence!

Figure 5.6 dramatically illustrates the importance of the

coordinate system within which the scattering process is discussed.

The curves in Fig. 5.6(a) correspond to the scattered light distribution

illustrated in Fig. 3.4 and confirms the well-known fact that a curve

representing the scattered intensity as a function of observation angle

will change shape drastically with angle of incidence--becoming quite

skewed and asymmetrical at large angles of incidence. However, these

same data, when plotted in accordance with our theory, describes a new

scattering function which does not change shape but will merely be

shifted in direction cosine space with changes in angle of incidence as

shown in Fig. 5.6(b). This is a rather significant development which

greatly reduces the quantity of data required to completely character-

ize the scatteiing properties of a surface.
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(a) Relative intensity plotted versus scattering angle.
(b) Scattering function plotted versus 0-00.
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The Inverse Scattering Problem

The problem of determining surface characteristics from scat-

tered light measurements plays an important role in many areas of

technical interest. Recall that the surface autocovariance function

and the rms surface roughness are two relevant surface characteristics

which are related to the scattering properties of the surface by the

transfer function described in Chapter 3.

Predictions of Surface Characteristics

Z A computer program has been written (see Appendix C) for cal-

culating the effective transfer function and the surface autocovariance

function from scattered light data. The measured data are assumed to

be a radial profile, S(p), of a rotationally-symmetric scattering func-

tion. An intermediate quantity, BQ(9), is first determined by calcula-

ting the two-dimensional Fourier-Bessel Transform of this scattering

function. The surface transfer function is then calculated from

Eq. (53), where A = 1-B. And finally, the surface autocovariance func-

tion is computed from Eq. (58). Representative curves fcr a diffusely

reflecting ground glass surface and a specularly reflecting polished

glass surface are shown in Fig. 5.7 and Fig. 5.8. Note that the total

integrated scatter, B, and the rms surface roughness, aW, are also pro-

vided from these curves. Figures 5.9 through 5.13 illustrate the pre-

dicted surface characteristics from other samples which we wish to

compare with independent measurements.
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Surface Structure Measurements

Three traditional techniques for obtaining surface structure

information involve profilometry, electro-microscopy, and FECO inter-

ferometry. Most profinmeters provide too coarse a measurement for

optical surfaces. As illustrated in Fig. 5.2 the electron microscope

works nicely on the rough ground glass surfaces but fails to yield

sufficient information about the smooth polished surfaces. The FECO

interferometer works well on smooth surfaces with a strong specular

beam but does not yield good results for the rough diffusely reflecting

surfaces since it requires multiple reflections. The latter two com-

plementary techniques were thus utilized in our research effort.

Surface profiles of rough samples can be determined from

electron-micrograph stereo pairs using conventional stereo-

photogrammetric techniques (Moffitt, 1959). Nankivell (1963) discusses

some of the stereo-photogrammetric problems unique to electron micro-

scope applications. Electron-micrograph stereo pairs were produced

with both a conventional transmission electron microscope and a

scanning electron microscope at a variety of tilt angles and magnifica-

tions for several surfaces with known characteristics. Considerable

preliminary experimentation with stereo-photogranmetric techniques was

then performed with a variety of stereoscope-parallax bar configurations.

A typical electron-micrograph stereo pair is shown in Fig. 5.14

with a line scribed to indicate the position of a set of preliminary

surface height measurements that were made with a standard Fairchild

Stereocomparagraph. This instrument consists of a mirror stereoscope
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fitted with a parallax bar containing a micrometer for measuring the

parallax of each desired pair of points. The resulting surface profile

is also shown in Fig. 5.14. This surface is a very rough ground glass

produced with 30 pm grit. The tedious procedure of obtaining surface

profiles in this manner becomes increasingly more difficult as the

surface becomes smoother.

The two statistical parameters which determine the scattered

light characteristics are the variance of the surface height distribu-

tion and the surface autocorrelation function. A computer program (see

Appendix D) was written which takes the surface profile data and

determines the above two parameters. An electron micrograph showing

the surface of Sample #172 magnified 10,000 times is illustrated in

Fig. 5.15 along with the surface profile, surface height distribution

function, and the surface autocovariance function. One hundred-twenty

data points were used for obtaining these surface parameters. Addi-

tional data was recorded to determine the degree to which the surface

was homogbnoous and isotropic.

Surface profiles of several smooth samples were measured by

Dr. Jean Bennett at the Naval Weapons Center on a scanning FECO inter-

ferometer (see Appendix E) capable of determining very small height

differences with a lateral resolution of 2 Pm. This instrument, along

with auxiliary equipment which includes a slow-scan TV camera, signal

averager, minicomputer, and teletype unit, yields the surface profile,

rms roughness, surface height distribution function, surface autocovar-

iance function, and other statistical properties of optical surfaces.
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* The results of these measurements on Sample #198 are shown in

Fig. 5.16.

The rms surface roughness was also predicted from visual mea-

surements of the FECO fringe widths, as well as from total integrated

scatter measurements performed at the Naval Weapons Center. Additional

scattered light measurements made on a few samples allowed the autoco-

variance length to be calculated when assuming the autocovariance

function to be Gaussian.

4' Comparison of Predictions with Measurements

Theoretical predictions of surface characteristics for Sample

#172 were shown in Fig. 5.7. Direct comparison with the results of the

surface measurements shown in Fig. 5.15 indicate that the values for

the rms surface roughness differ by approximately a factor of three and

the widths of the autocovariance function (distance to the first zero)

differ by approximately 20 per cent. Under the circumstances involved

this can be considered to be remarkably good agreement since this sur-

face is so rough as to make the theory somewhat suspect and not rough

enough for the electron-micrograph stereo measurements to be considered

reliable.

The predictions of surface characteristics based upon scattered

Xlight measurements from smooth surfaces are tabulated in Table 5.1 along

with the results of independent measurements performed at the Naval

Weapons Center. The rms surface roughness of a few samples was

determined both from total integrated scatter measurements and from

/1
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visual measurement of the FECO fringe widths. The wide variation in

the results of these two techniques for Sample #186 and Sample #163 was

attributed to nonuniform roughness over the surface of the sample. The

surface autocovariance width determined from the scanning FECO inter-

ferometer Is one to two orders of magnitude larger than that theoreti-

cally predicted from scattered light measurements. This is due to

the poor lateral eesolution of the instrument. The surface autocovari-

ance width predicted from a simple theory which assumes a Gaussian

shape for the autocovariance function does compare favorably with our

predictions. The autocovariance widths tabulated in Table 5.1 are

arbitrarily chosen to be the half-width of the surface autucovariance

function at l/ etimes its maximum height.

Indirect Verification of Inverse ScRttering Solution

The accurate determination of micro-structure on an optical

surface has been shown to be extremely difficult to accomplish by

direct measurement (therein lies the motivation for attempting to solve

the inverse scattering problem). However, our theoretical treatment of

the inverse scattering problem can be tested indirectly by using the

surface characteristics predicted from scattered light measurements at

a given wavelength to calculate the scattered light behavior at a dif-

Xferent wavelength. This calculated scattering function can then be

readily compared to the directly measureC scattering function at that

wavelength. Figure 5.17 provides a direct comparison of the measured

scattering function from Sample #184 at X = 0.6328 um to that predicted

from surface characteristics determined from scattered light
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Fig. 5.17. Indirect Verification of Inverse Scattering Problem.
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measurements at X = 0.4579 pm. The remarkable agreement displayed pro-

vides experimental verification of our theoretical treatment of the

inverse scattering problem, at least for smooth surfaces.

Wavelength Effects

The transfer function characterization of scattering surfaces

developed in Chapter 3 offers a simple means of determining the wave-

length dependence of the scattered light behavior. Once the surface

characteristics are known (whether from direct measurement or calcu-

lated from scattered light data), the same theory provides a simple

method of predicting the scattering function at any desired wavelength.

This technique of predicting the scattering behavior as a func-

tion of wavelength has been experimentally verified (see Fig. 5.17) for

wavelength ranges limited to the visible spectrum. Furthermore, the

same data can be used to verify the wavelength scaling law for smooth

surfaces stated in Eq. (70). This is illustrated in Fig. 5.18.

Similar attempts to predict the scattering properties of a sur-

face at a wavelength of 10.6 Pm from measured data in the visible was

not successful. This failure was due to the greatly expanded angular

width of the scattering function at long wavelengths as described by

the wavelength scaling law, and is illustrated in Fig. 5.19. Note that

scattered light measurements over angular range from 10 to 460 at a

wavelength of 0.4579 pm can be used to predict the scattering behavior

from 1.40 to 900 for a wavelength of 0.6328 pm. However, these same

measurements provide only a few data points in the angular range from

10 to 2.50 that are useful in predicting the scattering behavior for a
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wavelength of 10.6 pm, and no information is obtained concerning the

scattered light behavior at angles less than 240.

It is now clear that it may not be possible to compare the

scattexed intensity of two widely separated wavelengths in a given

direction without extiapolating one curve. However, this behavior has

the advantage of allowing one to determine the scattering characteris-

tics at very small angles (unobtainable by direct measurement due to

mechanical constraints) by making large angle scatter measurements at a

longer wavelength. The angular range of validity for predictions of

scattered light behavior based upon measurements from 10 to 800 at

10.6 pm is presented as a function of wavelength in Fig. 5.20. For

example, measurements from 1 to 80" at a wavelength of 10.6 pm could

be used to predict the scattering properties of visible light

(A = 0.5 pm) in an angular range from approximately 0.04J4 to 2.70. Or

conversely, if one has the capability of making very small angle mea-

surements in the visible, the wide angle scattering characteristics at

a )onger wavelength can be determined.
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CHAPTER 6

CONCLUSION

This study hss been a general investigation of surface scatter

phenomena dealing with several different aspects of scattered light

behavior. An elementary theoretical development based upon scalar dif-

fraction theory has been presented. Linear systems theory and modern

Fourier techniques result in a theoretical model of light scattering

systems which closely parallels the highly successful theory of iso-

planatic imaging systems. An extensive experimental program has

accompanied this theoretical development in an attempt to verify

theoretical predictions.

Summary of Results

An analytical expression has been obtained for a surface trans-

fer function which relates the surface micro-structure to the scattered

distribution of radiation from that surface. The existence of such a

transfer function implies a shift-invariant scattering function which

does not change shape with the angle of the incident beam. This is a

rather significant development which greatly reduces the quantity of

data required to completely characterize the scattering properties of a

surface. For a large class of well-behaved surfaces this transfer

function is described in term. of only the rms surface roughness and

the surface autocovariance function. This transfer function thus

116



I

provides a straightforward solution to the inverse scattering problem

(i.e., determining the surface characteristics from scattered light

measurements). Once the surface characteristics are known, the same

theory provides an equally simple method of predicting the wavelength

dependence of the scattered light distribution.

Experimental verification of the shift-invariant scattering

function has been successfully demonstrated for smooth surfaces (aW<<X).

The scattered light measurements from rough (diffusely reflecting) sur-

faces results in a scattering function which is shift-invariant over

only a small range of angles and departs significantly from the pre-

dicted behavior at large scattering angles.

A computer program has been developed that operates upon

scattered light data to yield the total integrated scatter, the surface

transfer function, the rms surface roughness, and the surface autoco-

variance function. Although accurate determination of micro-structure

on optical surfaces is extremely difficult to accomplish by direct

measurement (thus the motivation for attempting to solve the inverse

scattering problem), fa.,orable comparisons of predicted surface charac-

teristics with the corresponding meAsured quantities have been demon-

strated for both smooth surfaces and moderately rough surfaces. In

addition, experimental verification of the inverse scattering program

was accomplished indirectly by supplying scattered light data of one

wavelength as input to the inverse scattering program in order to deter-

mine the relevant surface characteristics; then this information was

used to predict the scattering function at a different wavelength.
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Excellent agreement with the measured scattering function at that

wavelength was achieved.

Since the above technique involves numerical computations on

sampled data, an analytical expressioit for a wavelength scaling law is

not required to determine the scattering function at any desired wave-

length. However, in order to gain insight into the wavelength depen-

dence of surface scatter phenomena, a wavelength scaling law for smooth

surfaces was derived and verified. This scaling law consists of a

change in the scattering angle as well as a change in the amplitude of

the scattering function with changes in wavelength. It therefore pro-

vides a valuable tool for predicting the scattering behavior in certain

angular regions or wavelength ranges where direct measurements are

difficult to obtain.

Further Theoretical Considerations

No explicit approximations concerning the size of the surface

variations were made in the theoretical development presented in Chap-

ter 3. However, a simplifying assumption was made regarding the random

component of the pupil function described in Eq. (33). It was assumed

that the phase variations in the disturbance emerging from the scatter-

ing surface were equal to the perturbations introduced onto a normally

incident wavefront. Careful examination of Fig. 6.1 reveals that the

phase difference introduced by reflection from a rough surface depends

upon both the angle of incidence and the angle of observation in addi-

tion to the surface height at the point of reflection. The phase

variations along the scattering surface can thus be expressed as

/
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Fig. 6.1. Illustration of the Phase Variation
Introduced by Reflection from a
Rough Surface.
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*OGM) =2ir(y+y )R~O
0

where (78)

y = cose, YO = cOseo.

The effective transfer function of a scattering surface is now

given by the following general expression

-[2ir(y+y 0)a^ 21 [ - _ _ _

e ~ C79)

This expression can be interpreted as a two-parameter family of trans-

fer functions, one for every possible angle of incidence and every

possible scattering angle.

This generalization still leaves us with a theoretical model

closely paralleling that of non-isoplanatic imaging systems which can

be characterized by a different transfer function for each off-

axis object point. It therefore seems reasonable that an "aberration

theory" of scattering systems can be developed to provide more insight

into the scattering behavior of rough surfaces.

A preliminary empirical search for a new scattering function

of the form (y+y o)m(a,s) plotted versus the quantity (8-0)/(Y+yo)n

resulted in the following interesting dilemma. When m=2 and n=l, the

scattering function for Sample #172 indeed becomes quite shift-invariant

with respect to changes in the incident angle (there is a theoretical

basis for this particular form of the scattering function if some

(: assumptions are made concerning the shape of the surface autocovariance

function). However, this same scattering function degrades the
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p
shift-invariance of Sample #200. Clearly a more general theory should

also work for the special case of smooth surfaces.

Suggestions for Further Research

The following suggestions are made for further research in the

area of surface scatter phenomena:

1. Continue the theoretical development on the transfer function

characterization of scattering surfaces. This should include an

attempt to solve the inverse scattering problem for rough surfaces

by using the general expression for the transfer function described

by Eq. (79). Empirical curve fitting techniques may be useful in an

attempt to discover new scattering functions or plotting techniques

which result in shift-invariant behavior with respect to changes in

the incident angle. Generalizing the surface scatter theory to a

complete vector treatment while maintaining the transfer function

approach would be a major contribution to the understanding of sur-

face scatter phenomena.

2. Improve the scattered light measuring capabilities by

obtaining laser sources that span a larger wavelength range.

3. Automate the scattering apparatus for high-speed acquisi-

tion and analysis.

4. Acquire samplts and perform measurements upon selected

moderately rough surfaces (0.1<a<1.0) and compare with theoretical

predictions.
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APPENDIX A

CALCULATION OF ABERRATION COEFFICIENTS
FOR DIFFRACTED WAVE FIELDS

For the case of a plane wave incideni upon an aperture, the

diffracted wave field on an observation plane is given by Eqs. (16) and

(17), where

W = (Z-) + (V't + ,I')/A. (A.1)

The quantity Z can be written as

4 £ ,'~.~)2+ (9-91)2 + 2

A /1 + [A2+a12 - 2(' +g,')]-/-, (A.2)

where

g2 =92 + 92, a,2 = jo2 + P,2.

A binomial expansion of the above square root results in the following

expression for P

A [a2 + ,]g
2

{; ~ ~ ~ ~ ' tt +v+4;. +p,)2+2a2g2-4a22;..t+g)482(XX,+yy~,) ]/Z4

+ higher-order terms. (A.3)
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If we assume a rotationally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point on the

y-axis. Let us therefore set X = 0. We can then let A = 9 and

9' = ' coso, hence

W [ 92 + i2i

[p4 + p4 + 492pI2 COS20 * 292gt2 -493' COSO

- 4 9,3 cosO]/ 
4

+ higher-order terms. (U.4)

If we now substitute

Y= Pymax 8 a2

intc the previous equation, we obtain

S= [9max 2 + (a/2)2 a2]/j2

4 9 4 + (a/2)4 a4 + 49 2 (a/2)2 p2a 2 COS 2

8 max +2ma x

+ 2,max2 (a/2)2 pZa2 - 49max 3 (d/2) p3a cosO

S49 max3 (d/2) 3 p&3 cos ]/B4

+ higher-order terms. (A.5)

Equating coefficients of corresponding terms between this equa-

tion and the wavefront aberration function given by Eq. (24), we obtain

the aberration coefficients tabulated in the first column of Table 2.1.
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If we now have a spherical wave incident upon the aperture, the

quantity W in Eq. (17) is given by

W = (e- - (.Co- ) + (a' + pg')/A, (A.6)

where

to = +2 + 912+ f2 = A Vl + §12/22.

A binomial expansion of this quantity results in

j, " = 2 (^,/i)2 _ (s'l ) + ... . (A.7)

But these will merely cancel identical term3 in the previous expansion

thus resulting in the aberration coefficients presented in column two of

Table 2.1.

For the case of a hemispherical observation space the diffracted

wave field is given by Eqs. (22) and (23). With a plane wave incident

upon the aperture, we have

W (t-) + (N' + 09 '). (A.8)

The quantity Z can be written as

Z = V(-.')2 + (9- 1)2 + 2

C= 1 + [b'2 - 2f(a&, + 09-)]/P 2 , (A.9)

where

,2= + 9,2, X2 = ,2 , 92 +

/
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A binomial expansion of the above square root yields

- /) 2 - [' 4 2(L, o,) + 42(a, ,)2]-/

+ higher-o-.der terms. (A.10)

If we again assume a rotationally-symmetric diffracting aperture

we can, without loss of generality, choose the observation point on the

P-axis. Let us therefore set a = 0. We can also let 9' = &' cos4 which

* results in

W = (g'/fp) 2 - r - 4 09 cosO + 4j,2 02g t2 cos 2 ]/J,4

+ higher-order terms. (A.11)

If we now substitute

0 POmx '
max2

into the previous equation, we obtain

(d/2r)2 &2 . [(d/2)4 a4 . 4-0max (d/2)3 ap3 cos

+ 4^2Omax2 (d/2)2 a2 p 2 cos2 J]/p 4

+ higher-order terms. (A.12)

Again equating coefficients of corresponding terms between this

equation and the wavefront aberration function given by Eq. (24), we

obtain the aberration coefficients tabulated in column three of

Table 2.1.
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If we now have a spherical wave illuminating the aperture and a

hemispherical observation space, the quantity W in Eq. (23) is given by

r Zi) - (-0-4 ) + (czx' + ',(A.13)

where

-o= rt,2 +I2 .*,2 = +f 2'1 ,/v.

A binomial expansion of this quantity results in

to ( /) 2 _ . (g,/,)4 + .. (A.14)

Once again these terms merely cancel identical terms in the previous

expansion, leaving only coma and astigmatism present in the diffracted

wave field as indicated in the last column of Table 2.1.
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APPENDIX B

BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

The basic quantity that characterizes (geometrically) the

reflecting properties of a surface element dA is the bidirectional

ref.'.ectance distribution function (BRDF). This quantity

frei,0i; er,Or) = dLr(8i,i; Or' r; Ei)/dEi(ei,0i)

= dLr(ei,Oi; er,Or; Ei)/L ((eii)df2 i (sr - 1 )

(BA1)

is defined by Nicodemus (1970), as the reflected radiance

dLr(6i,0i; er, r; Ei) of the surface element dA in the direction (Oror)

divided by the incident irradiance dEi(Oi,oi) = Li(ei,0i)d~i producing

it. The geometry of this situation is illustrated in Fig. B.1, where

the element of projected solid angle is given by dP = cos~dw.

The numerical value of the BRDF for a given pair of incident and

reflected ray directions may vary frcm zero to infinity. In particular,

consider two ideal cases. The BRDF is a constant for all reflected

directions for a perfectly diffuse (Lambertian) surface; and it becomes

infinite (as a Dirac delta function) for a perfectly specular reflector.

The BRDF, defined above as a ratio of infinitesimals, is an idealized

concept that can never be measured exactly. Real measurements are
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always made over some finite solid angle and wavelength interval and can

therefore yield only average values T over those parameter intervals.

The BRDF is basic in the sense that all other reflectance or

scattering functions can be derived from it. For example, Judd (1967)

lists nine different kinds of reflectance functions based on the angular

extent of the incident and reflected radiation. All of them can be

derived from the BRDF.

Note that the BRDF is a four-dimensional quantity that can be

thought of as an infinite family of two-dimensional light distribution

functions--one for every possible angle at which the incident beam can

strike the surface element. This involves an overwhelming quantity of

data, especially where high directional resolution is needed to

describe glints and specularities.
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APPENDIX C

COMPUTER PROGRAM FOR INVERSE SCATTERING PROBLEM

The following is a computer program for calculating the effec-

tive transfer function, the rms surface roughness and the surface

autocovariance function from scattered light data. Once these surface

characteristics are known, the same program can be used to predict the

E (scattering properties at a different wavelength.
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PROGRHAM SSMAIN(INPUTOIITPI'T, TAPtSuINPUT,TAP1,uOtiTPIT)

COMfl"J ASU(A0)p RnM3L(A)t CSolli(304A), H.(sI4P), SCALE, WAVE, RM3

Cnmm"'J o5, 15, IA, ROuUTE, SAMPLE
DATA TYPEI, TYPE2. IYPT.3, FNIP/4HSJFRF, 'INAUTO, 'INSCATe 4HENOP/
DA1A IFLA(;,O,

C ete***e**tt***e*e*h*eeea**a.aeaaeeae4 90(1l FOIWMAT(Alu,1.),A4)
9Q90 FUPiAT(t4Ioh(/#),1(10XE3tiEsRClk IN 'TYPI' OF PRUGkAp. OATAo//))

C ek,
C *** REFAl) TypE flf IIATA tISFIu

10 tAN~(5,1I) SAMPLE, '"1'jTt', TYPE
IF(TYPE.Ef).TYP~j) GOi In %
!FrTYP~qE).fYPF?) GOr TO 31,4

IF TVFt~ ~)*TrIA)GO TA 4.1
TU~YE.~.E9OP)GI TO 19

ti11 W4 TF. (b9

30 AIL AIITO(TFLAr.)

40 Atl SrAT

99 -3t TI

YpNtrt*FR knt!TF

G14L %, "1, (0~eFJpF50,U30

D)ATA ISTAQ/lW*/

960FUPIIAT()NI, ?4(/), S7Y P004%URFACk. PRQFILE OAIA,11,
I SOX# 19"*A!TH WAVELENGTH OF ,EI(4.4IH MICRON#//,
2 5 tA X ?8H.ARPIIEO I.ITM A SCALE FACTrIR ,t,/

9q I FfllmAT(4,I5tiSIJflACF PqnFILF)
99;4?PO~U~mAT (/, I(X,'HHmSs,E9.3,tbH YMTN#F9g3,b14 YMAvE9,3,//)
99.13 FOWmiArCg, IlIAIT
q9OM FORMAT( /,/DhX,9HHISTGRAM)

NT AT U
C*** OS Tq SmPI~lTjG n1iTANCE (IN PHOTO IN MM

RL.AU(StUGI(.l) US, IA# SCALE* WAVE
4 00Ij (5,9iV1) hip 7, '10fEY, NOEX

00) ') 8,
5 FMC)u0

kEA& 5qw)((IuOX
C ccPAR~ALLAX LOUATIUN
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C **DATA CONVERSION~ FOR SUJRFACE PROFILE
xumI)t X12.
YBS/Mot x

20A 53zb3+(A(i)-Y)**?,

Bay-M*X
DO 25 !uINOEX
A (1) A (11-(M*I+t.)
IDuaJTOT + I

25 U(70)NACT)
MTOT a NrIT + MOEX
IF(t iEX,LE.b) GO TO 4

WWJ1E(6,9400 IAVE, SCALE, SAMPLE

CALL PP1NTCo,LlS*NTnT,2)
C FIND YMAX ANfl YMIN

00 I$ Int,NTOT

IF(YI.GF.0(I)) GO TO 30

GO MO 3'i
30 IF(Y2,LE,0(I)) GO TO 35

C *** TAfitit ATE THE HISTOGWAM ANDL CALCULATE R4S
Xu(Yl-Y2)/NDEY
0 110 lH!t#NOEX

00 bfl !IjNTDT

00 '0 Kul,NOtX
LaK-NflFX/A.
!FCOfl).GT,L*X) GO TO 50

unTo bo
so cnNTT'ljUE
to c(jkrjNUE

RMS aCS.SP TOT) * e5
WITEr (6j9902) Rf4St Y4# Yl
DO 10 IulNt)EX

NHB) (I).

C *w* C11CLATF TH SUWFACE AUTOCOVARIANCE
00 9? ISIDNTOT

NITT,TOT.T)+%
DO be KXINTT

99. CSUjhw(I)zCSUORd(t*DS
RET(JRN
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5IJ8rUT!NE AUTn(IFLAG) CI4(0) 3f),CADM

COM40Nt US* IS# TAI WOnJTE, SAMPLE
DATA PJ/3,I'*lj9?/

90.410 Ful) AT(~~ (?.,KEidI)3 koFpIE04 ~ 93

9002A VOWMAT( 8(F9.3,X)
9940 FOR1iAT( tI, 20i(l), SAX# ?7MSI:FACE AUTOCOVARTANCE OATA,//,

I 5MY, 19,I0TYl WAVE TN('H OP ,Eli4.'lH MICRON,//,
2 SOIX, ?lH(.4APllFl' o'jil A SCALE FACTOR p,31#/
3 SIX, 1jWSAiAPtF No., IX, A4)

99?I FoRm&TC1H1,9HsCATTf.QImr, p11N1;T.
990i? FLPmAT(//,?pqH TO. P',% S IRFACF R01'G'e.ESS It-, F993# 7M MICRON)
99,13 FOR'IAT(IHI, 4.?q(SYSTM) FO1k~' T(.J#-RS5FL TRANSFORM FUNCTION)
q~v FCwmA(tNI, 31HSUJWFACE A0I COVARIANCE FUNCTION)

9qN'j FURMAT(1H1,1?lYRANSFfR FlINCTIO)N)

IF(Rl0UTFE.(..) GO TO 'I
AAn(,0A) SClALE# WAVE

WRITF(b'q9900) 14AVE, SCALE, SAMPLF
4I IF(LrLAG.EQ.1) GO TO 5

NEAq(5,4iA~.3) fls, 1, IA, SCALEp WAy,. RMS

lRIlLC0%#49'4,l) WAYEt SCALF, SAMPLE

Wk7TV(6,9WLP) RMS

CALL PnlNlcCsU6W#dOSISta)
n5x0/WAVE

C a'CALCUILATE THE TRANSFER FUNCTION

WT(,9905)
CALL PRINT(HpUSoISol)

C a*CALCULATE f6 FRO~d RMS SluRFACE IFOLGHNESS

C aaFINI' THE (SYSTh'O) FOklW1tkPh*S',EL TRANSFORM FUNCTION
00 P1 181,1S

2(4 Bi0(l)vH(I)4(R-t*)
WRITC(N,99643)
CALL PRIN7ChjO,flS,IS,1)

C a nETfTPMYNF THFf vuTPUT INTrpvAL nA

C a.FINW 7'E SCATT~wING FUN~CTION
CALL HANEL(f,DS,IS,183,OAtIA)
WRJIF (b,9411)
CALL PkINT(9SOAtlA,3)

C tb* FIijfl TF'L (sy~rti) FfiI'RTEP-PESS'L TR-INSFORM FUNCTION
KMS IS-I
00 30 TalTs

WRII (6.Q903)
CALL PWIfJT(f)(),PSTSol)

C .aFIND 7T4E SCATTEIN'G FUNICTION
CALL H-ANEL(IU,0S,ISlb5*DAgIA)
WRITE (6,9901)
CALL PRINT(8SOA#IA#3)
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RETURN

E ND

COMMOrN 85000), 000001), CSL'(w(3Q1P)s "(300), SCALE, WAVE,. RMS
CPTrC'' Ob, IS, IA# ROOJThe SAM4PLE
DATA Pi/,1'J15927/

9901~ FORMAT(I&4it POW,) 591X, ?4SCAITFRTNf, FUNCTION DATA.//,
I SOY, 19Hw!TH WAVLLENGih (IF #LO47 mirRO3N,//,
a bNX, P RGAPHH.' W~ITH A SCALE FACTOR IF,,/

3 5OX, 1PHSA0PLE NO., IX, A4)ii990U 1FOP11A T I p IqHiCA T T R It, F ','CT I (N)
q FLIfl1AT(//t?9H TtiE VM SUwF ACE PI)'Jr01fSS IS, f9o3p 7H MICRON)
990A3 FnRl4AT(Il, 4J(YSTtti) FC-UkIFR-NFS4FL TRANSF(Ilti FUNCTION)

99V~4 9'CWVA1 (IIF.I 3IMSJRFACE AILTocnVAKIA*ICE FliNC bON
99Y FUkMAT(IIJI, ,)'h8YSjLM TIkANS FP FUINCTION)

REAf(%t9$d 0 A,~ IS# SCALE, WAVE

WHTTF(btqq&,~) ,IAVEp SCALE, SAMPLE

CAt.1 FkIPPJT(kS,OA,IAl3)
C n* E LP'mINF 714F OtITPUT INTEPVAL OS CASSUMINrO AR IS NON-INCREASING)

CALL TRnSIA AFSIi
IPffwrIITE.EG,O) 0S*.&!/AAlvF
nS. I)S* CALE

C ''FIND THE (SYITF'41 FriulIRP-FESSEL TRANSFOIRM FUNCTION
CALL AIL(SfAAt0,l,)
wfhITf (oS,9 901R)
CALL PRIpqT (HO, I), S, 1).

C a.CAt CUILATE THFf Ti4AN.FEW FUNCTION

Of) 2f) IsItS
2c~(i l~ - * 910(j)

iWPITF (6,99P5)
CAL.L PRINT(HiflspisI)

C , CALC'L ATF SJI'mA SWIJARED ANDJ AmS
SIrSOa(*AVF/C4.aPl))**2.*ALOG(I,/(I.-B))
RMS m ~'S*'

C ''CALCOILATL T0F SURFACE AIJTOCOVARIANCE FUNCTION
00 3.1 lts

3,1 CStlbl (I)$ (AV/(4*Pl))**2**Aj.OG(HCI)) *SIGSO
LIS a DSaW&VE
udRITF (I,99cWA
wktC'4,99CA) RMS

CALL PRINT (CSU3.J-l'S#ISOP)
TF(Prl'iEEcV.l) CALL AUTO(1

E -Nn
SURQML17IN-F PJTtf(X,CX, !XoZTl, IFLAG)
REAL X OcZ),05(5)
DATA EP.5/sol/, L)?s/sI. 02t opst 95, W
I MAX&KP

fl*' ', Iu. 1X
TF(YmAXG.XC!)) GD TO 5
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5 AxiN I iI

02a YtIA$ *E PS
IF (IrLAG.?-Q..1 Gf To PS
00 1?i 191MAX,!Y
IFCXCI),I T,O)Z) GO TO 20

11 CON T NIi

25 be A.0GI, 07)
Its Ijtt(t,)#1

TES~1s 10,** S-K)
* 00~~O 3.1 1*1,5GOT q

30~ CUNTJ1;4LE
OZ& D nfZ~s(I)*10.**K

Sub~i'lJTINL VRINT(Iw,DXTw,lU)
REAL 000-1.1, PT(h1I), (INIT(S)

$ ~OAIA UNIib/64'LAmHiAAtimjrR0NEbH BETA
C *** ,a**,**A,.*,.*******t*q* **

9Qi~j FuwvAT(l/,PRK~aI(A.V~ e5(12X,E8,2) / 4X*ZMX(,Ab, IH),3X,9I4AMPLITUOE,
C 4&x, 1 ....-- 0))

9 9W 2 F0RIAt(aYF9,iti,F9.3'4K. I1!At)
C **

III PIMPIll'

CAIL . lNTfR(W#0X#.TWDAIMP#, 0 )

PTCI)vIH(

IP(K) u1.10 wd

PT (K)@IH
xsx*()x

3w CONTINUE
RETURN
END
Su~kRIUT1IJf 1.AptIK (WDRflkdVfDk'OIV)
REAL W(i) V(100)
DATA C/6.1783181i4/

Ao a .iv
R'hOm(I-l) 'DRHO
00 to~ YTa.kIw
RmVR*(IR-P)+nR/?.

PRV(1)zAelR*C/2,
Rf TURN
END
FUJNCTJION '4j@(X)
IFCX .LT , .) STOP
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IF (X.En CO.Q,)iE TURN

CONSI MP./X
Mstd+1j.3*X

FMaR.
ALFaM.

BMKu 'YX) OVmI CONSToFM
FMOFMI

FMIRIIMK

POALFsALF*BMK
ALFP,O*ALF.9BmK

RET UkN
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APPENDIX D

I
COMPUTER PROGRAM FOR PROCESSING SURFACE

PROFILE DATA FROM ELECTRON-MICROGRAPH STEREOCOMPARATOR

The following is a computer program for processing surf.'ce

profile data from the electron-micrograph ste.-eocomparator. It

provides the surface height distribution, the rms surface roughness,

and the surface autocovariance function.

1

137



I

STFRO I3:OAPDT 09/17/7A

10 11NM A(PO0)p F(200)
20 R.Ar)M, Z, N, K I
30 Z=Z/57.2998
40 FOR I = I TO N

50 READ A(I)
60 NEXT
70 R = A(1)
80 C = ?*fl*SINZ)
90 FOR I = I TO N
100 A(M) = (AC) - P)/r.
110 NFXT I

PO S = S =Sp= S3 = 0
130 FOR I = I TO N
,AO S = S + AI)
150 NFXT I
160 Y = SIN
170 X = NIP
IRO FOR I = I TO N
190 51 = 51 + (I - X)*CA(I) -Y)
2 200 SP = SP + (I -X)19

PlO S3 = S' + CA(I - Y)tP
PPO NFXT I
P30 M = S1/S2
P40 R = Y - M*X

250 C = SI/SOR(SP*S3)
P60 S = YI = Yp z 0
270 FOR I = 1 TO N
280 A(I) = A(I) - (M*I + R)
290 S = S * A(I)?2
300 IF fl ) A(I) T14FN 330
310 YI = A(1)
320 00 TO 350

V 330 IF Y2 < AM) THEN IS0
340 YP = A(M)
350 NXT I
360 PRINT "RMS"v "MFRIT FUNCTION"# "YAX", "YMIN"
3710 PRINT
380 PRINT SOR(S/N), Ca Y1° Y2
390 n = (YI - YP)/KI
dO0 FOR I = I TO K1
410 F(I) = 0
4PO NFXT I
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430 FOR I = I TO N
440 FOR K = I TO KI
450 J = K -KI/P
460 IF AM!) > J*D THFN A90

470 F(K) = F(K) + I
A80 60 TO 500
490 NEXT K
500 NFXT I
510 PRINT
520 PRINT
530 PRINT " HEIGHT DISTRIPUTION"
540 PRINT
550 FOR I = I TO Ki
560 PRINT F(I)
570 FI) = 0
580 NFXT I
590 PRINT
600 PRINT
f, 10 PRINT "N"s "Y"s "AlJTOrOVARI ANr;'"
6PO PRINT
630 FOR I = I TO N

C 640 FOR K = I TO (N-I)
650 F(I) = r(I) + A(K)*A(K + I - 1)
660 NFXT K
670 PRINT Is ACI). FI)
680 NEXT I
690 DATA 10000. As 40, 11

700 DATA P.PO 2.87. P.'3. 3.05. 3.05. 3.12. 3.1P. 3.13v 3.P5
710 DATA 2.90a 2.67, P.80P.83,3.00, 2.90p 2.P3. ?.87, P.61

720 DATA 2.86, 2.65a 2.76. 2,72p P.78. 2.78p 2.96. 2.82. P.93
730 DATA 2,81. 3.00. 2.90. 2.83. 2.89s 2.90p 2.98. 2.86a 3.05
740 DATA 2.88a 3.03,2.88#3.29
750 DATA P.A7 2.33s 2.34. 2.38. 2.28. P.33# P.43. P.48. P.61
760 DATA 2.58. P.S3. 2.35p P.36. 2.30. P.POP P.15. 2.P. P.I
7O DATA 1.84. 1.9P# 2.09. P.P3. P.P7 ?.31. P.19a 1.95p P.05

; 780 DATA P.00. 1.9A* 2.10. P.P3 ".P, P.00. 1.89. ".tP. 2.20
790 DATA P.03, 2.00. 2.03. 1.96
800 DATA P.87a 2.84# P.85. P.71s P.9A. P.87. 3.08. 3.10. 3.25
810 DATA 3.0 P.97. 3.14. P.98. 3.00. P.98# 3.06. P.70. P.P7
6PO DATA 2.80. P.74. P.79. 3.00# 3.PO P.97. 3.11s 9.76. P.8,
830 DATA 2.7A, P.81. 3.01. 3.16. 1.06, P.79. 2.73. 9.R5, 2.90
8AO DATA 2.73. 2,91. P.90. 3.00
850 DATA P.00. 2.08. 2.23. 2.02. 2.P. 2.PO 2.14, 2.2. 2.30
860 DATA 2.30s P.39. 2.31. 2.21. ?.42# P.18a P.389 2.37. P.13

870 DATA P.29. P.27. 2.01 .. 19s9.98* 2.27. 2.P1 P.34, P.08.
880 DATA 2.25, 2.P7. 2.15a 9.3A# P.40 2.2s P.15. 2.16. P.19
890 DATA 2.15. 2.31# 2.44. PSP
999 FND
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I

APPENDIX E

DESCRIPTION OF SCANNING FECO INTERFEROMETER
USED FOR DETERMINING STATISTICAL
PRCPERTIES OF OPTICAL SURFACES

* The following is the manuscript of a paper presented at the

1974 Annual Meeting of the Optical Society of America in Houston,

Texas (J. Bennett, 1974).
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Use of Interferometry for Determining the rms Roughness, Autocovariance
Function, and Other Statistical Properties of Optical Surfaces*

Jean M. Bennett
Michelson Laboratory, Naval Weapons Center

China Lake, California 93555

ABSTRACT

A FECO Scanning Interferometer will be described that can
measure very small height differences with a lateral resolution
of 2 microns to yield statistics for optical surfaces.

The other papers in this Symposium on Techniques in Surface
Interferometry have mainly considered the use of interferometers
to study the contours on optical surfaces, or more specifically
the deviations from the desired surface contours. These devia-
tions are sometimes called the figure of the surface, and opti-
cians frequently talk of half-wave or quarter-wave optical
surfaces when they mean that the deviations from a perfect plane
or curved surface are one-half or one-quarter of the wavelength
of the light used to test the surface (traditionally the mercury
green line at 5461 A). The figure of an optical surface is
important in Jetermining the resolving power, focusing proper-
ties, and aberrations in an opticaJ system. For this reason
much work has been devoted to interfacing the interferometer,
which can sense figure errors, to the polishing machine which
can eliminate them.

Optical technology has now progressed to the point where
another parameter, the microroughness, also becomes important.
Microroughness on the surface scatters some of the light into
unwanted directions. Scattering cannot only reduce the contrast
in optical images by removing light from the bright areas and
filling in the dark ones, but it can also drastically reduce
the optical throughput of a system long before the resolving
power is affected. Scattering is also a serious problem when
one is trying to observe a weak object that is very close to
a bright object. This situation occurs frequently in astronomy
when, for example, one is trying to observe details in the solar
corona near an occulting disk, or when looking at a faint star
located close to the moon or a bright star.

The problem of scattering from optical surfaces has been
around for a long time. Even before 1900 Albert A. Michelson,

0 the man best remembered for his measurements of the velocity of

*Reproduced here with permission of the author.
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light and the Michelson-Morley experiment, thought about light
scattering. At the Michelson Museum in China Lake we found
an entry scribbled in cne of Michelson's pocket notebooks
along with shopping lists, a prescription, notes for a coming
lecture, possible causes of error in an experiment, and other
diverse items. The entry is shown in Slide 1 and reads, "Find
relation between roughness of surface and angle of scattering.
Much has happened in the 80 or so intervening years, but we
still have not satisfactorily solved the problem Michelson
hastily noted down around 1890.

What we have learned about the relation between surface
roughness and scattered light is that the total hemispherical
scatter from a surface (i.e., all the light scattered into a
hemisphere) is related primarily to the heights of the surface
irregularities when these heights are small compared to the
wavelength of light. By measuring the total hemispherical
scatter (frequently ralled TIS for short) and assuming a
Gaussian distribution for the heights of the irregularities,
we can obtain a value for the rms roughness of the surface.
For many types of surfaces, particularly polished glass, fused
quartz, calcium and magnesium fluorides, etc., this rms rough-
ness value is in excellent agreement with the roughness value
obtained from interferometric measurements, a technique I will
describe in detail in a few minutes. However, where the scat-
tering theory falls short is in predicting the effects of
scattered light from uausual optical surfaces such as polished
alkali halides, polished metals, electropolished metals, and
micromachined metals. In these cases TIS measurements can
yield an effective rms roughness value that is either consid-
erably smaller or considerably larger than the interferometri-
cally measured value. More troubling even than this is the
observation that we are not able to correctly predict the
angular dependence of scattered light about the specular dir-
ection even for the smoothest polished glass surfaces. This
situation arises because all the scattering theories assume
a Gaussian autocovariance or autocorrelation function for the
surface and none of the real surfaces we have studied have
Gaussian autocovariance functions. For this reason, in order
to have a theory which correctly predicts the effects of scat-
tering from a surface, we need to know the autocovariance func-
tion and other statistics of the actual surface. How to
measure these statistical properties is the subject I am going
to discuss for the remainder of my talk.

Interferometry has been shown to be an excellent method
for looking at very small height differences on surfaces, height
differences of a few angstroms, i.e., a few thousandths of the
wavelength of light. Tolansky pioneered this type of inter-
ferometric technique and gave the interference fringes the
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enigmatic name of Fringes of Equal Chromatic Order, or FECO for
short. The two main things that are important about this type
of intereference fringes are (1) that they contour height varia-
tions on surfaces, and (2) they occur as wiggly black lines in
a continuous spectrum of light reflected from the interferometer.
I am making the second point to distinguish FECO fringes from
the more corm.on Fizeau fringes which also contour irregularities
on optical surfaces, but which are formed in monochromatic light.
FECO fringes have advantages over Fizeau fringes in that the
order of interference of the fringe is always known, and small

*areas of the surfaces can be studied at will without having to
readjust the tilt of the interferometer plates.

I am now going to describe a FECO system we have built to
measure the statistical properties of various types of optical
surfaces and I will show you samples of the data we have obtained
with this system. I will also mention some types of experiments
we are planning for the future.

A photograph of the FECO Scanning Interferometer is shown
in Slide 2. Most of the instrument consists of a signal averager,
minicomputer and teletype, and the interferometer, the heart of
the experiment, is the smallest part. The optical arrangement
is shown in Slide 3. The interferometer I consists of the sample
to be studied, coated with an opaque layer of silver (upper
plate) and a super smooth surface of polished fused quartz
coated with a semi-transparent film of silver of approximately
9S% reflectance. The two optical surfaces are very close
together, being separated by only a few half wavelengths of
light. The actual spacer consists of the dust particles on
the two surfaces. The interferometer is illuminated in reflec-
tion by a collimated beam of white light from a xenon arc. The
important feature of the FECO system is lens L2 which focuses
an image of the interferometer surfaces on the slit S of a con-
stant deviation spectrograph. Thus, the interference fringes
which are viewed in the focal plane of the spectrograph contour
the irregularities on the pair of optical surfaces. A picture
of what might be observed is shown in the circular inset.
Three mercury lines are included for wavelength calibration
purposes, but the information about the surface topography is
given in the wiggly interference fringe. There is a one-to-
one co-respondence between the wiggles on the interference
fringe and height variations on the pair of optical surfaces.
To get an idea of the magnitudes of the quantities we are deal-
ing with, the wavelength %ariations can yield information about
variations of the heights of irregularities of the order of a
few angstroms. The lateral resolution is much smaller, so that
the length of the interference fringe corresponds to a distance
of one mm on the interferometer surface. The width of the
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spectrograph slit determines the other dimension, so we are
actually looking at an area one mm long by about 2 microns
wide.

To obtain the statistics for the section of the inter-
* ferometer surface we are observing, we scan the spectrum line

by line using a special slow scan TV camera. After suitable
ageraging, the information on one scan line appears as shown
in the upper right hand part of the slide. The desired infor-
mation is the wavelength of the portion of the interference
fringe included in the scan line and this is obtained from
the computer analysis. The information from the entire frame
consists of wavelengths of 512 equally spaced points on the
interference fringe, so we have data for 512 different areas
on the surface, each one of which is a little square 2 microns
on a side. In the statistical analysis a least squares
quadratic curve is calculated from all 512 wavelengths and
defines the mean surface level. Then wavelength differences
from this curve are converted into height differences above
and below the mean surface level. Using the height differences
we can determine the rms roughness, height distribution func-
tion, slope distribution function, rms slope, autocovariance
function, and other statistical parameters for the surface.

I am now going to show some data that are typical of what
we have obtained for various types of surfaces. We have
studied very smooth glass-type surfaces such as fused quartz,
Cervit, calcium fluoride and magnesium fluoride, polished
alkali halides (potassium chloride and sodium chloride),
polished metals (copper, beryllium copper, titanium and titan-

ium alloys, molybdenum, and stainless steei), electropolished
nickel, machined copper, and holographic gratings. All of the
smoothest polished glass-type materials have similar statistics,
and Slide 4 shows results for one of these. This is an
extremely smooth calcium fluoride surface polished by Abe
Klugman of the Northrop Corporation and had a visually measured
roughness of 9.4 X rms. At the top of the slide is a Polaroid
photograph of the interference fringe and directly below it is
a TV scan of the center line of the fringe. Note that the
wiggles on the fringe represent height differences of consid-
erably less than 10 A. The autocovariance function shown below
can be roughly considered as the correlation between points
on the surface separated by the amount shown on the x axis.
For the very smooth surfaces there is positive correlation
between closely spaced points but those farther away are
random.

The height and slope distribution functions for the same
surface are shown on Slide 5. Note that both measured distri-
bution functions (the histograms) are very close to Gaussian,
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and actually the smooth curves are Gaussians having the same
areas under the curves as do the measured ones. The slope
distribution function is only half a Gaussian curve because
we do not distinguish between positive and negative slopes.

Polished alkali halide surfaces and some polished metal
surfaces are similar in that both are composed of macro and
microscratches with no smooth areas in between. In Slide 6
we see the scanning camera trace for a polished KC1 surface
and the autocovariance function. Note the oscillations in
the autocovariance function which indicate longer range cor-
relations than those observed for the smoothest surfaces.
Note also that neither this autocovariance function nor the
preceding one were Gaussian in shape. In fact, we have never
observed an autocovariance function that did have a Gaussian
shape. In Slide 7 we see that there is slight asymmetry in
the height distribution function although the slope distribu-
tion function seems to be a very good Gaussian. Incidentally,
I should point out that the rms roughness values shown on the
height distribution function histograms are about a factor of
two smaller than the visually measured values. This is because
the scanning camera does not take into account the width of

* the fringe, only its center line. Visually we measure the
extreme width of the fringe and convert the peak-to-valley
roughness to an rms value by dividing by 2V2. There is a very
good linear relationship between visually measured roughnesses
and the values obtained from the scanning camera.

In Slide 8 we see data for molybdenum, a typical polished
metal surface. The autocovariance function with the oscilla-
tions is similar to that for KCl. The height and slope distri-
bution functions shown in Slide 9 are reasonably good Gaussians
although there is some raggedness on the height distribution
function.

Recently very low scatter electroless nickel mirrors have
become available. In Slide 10 is shown the autocovariance
function for one of these, which had a visually measured rough-
ness of 23.6 A rms. This surface is a gradually undulating
one with almost no obvious scratches. The autocovariance func-

3tion also has a lower frequency oscillation than was observed
for the KC1 and molybdenum surfaces. In Slide 11 we see that
there is a definite asymmetry in the height distribution func-
tion. There are proportionately more small bumps on the sur-
face than there are small holes. However the slope distribu-
tion function is an extremely good Gaussian.

One of the most interesting surfaces we have encountered
are those made on a special type of lathe by a single point
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diamond tool. Recently we determined the statistics on one
which had a visual roughness value of only 22.5 X rms.
Slide 12 shows that the autocovariance function for this sur-
face has only a long period oscillation. We probably are not
resolving the individual grooves made by the diamond, but only
multiples thereof. The height and slope distribution func-
tions on Slide 13 are reasonably good Gaussians even though
there must be obvious periodicity in the surface.

As a final set of statistics, we see in Slide 14 a
tracing of a holographic grating with a nominally sinusoidal
groove shape formed in a photographic emulsion. This sample
was kindly furnished to us by John Stover of Dow Chemical
Company, Rocky Flats, Colorado. The autocovariance function
is for only one scan and clearly shows the periodicity of the
surface. The height distribution function on Slide 15 is
clearly not Gaussian, and I did not even attempt to put a
Gaussian curve through the data.

Our plans for the future include increasing the sensi-
tivity of the scanning camera so we can obtain scans from many
more portions of the surface. Most of the data shown here are
averages of 8-10 separate scans. We also hope to automate
the scanning interferometer so that we can make equally spaced
scans adjacent to each other to obtain statistical data on
a square one mm on a side.

4In conclusion, I have described a type of interferometer
which can be used to obtain statistical information about the
topography of optical surfaces. This instrument can distin-
guish height differences of only a few angstroms and has a
lateral resolution of about 2 microns. Using the statistics
of the surface, we hope to be able to predict the scattering
properties of the surface.
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